TY - JOUR
T1 - Low-volume PEEK gas cell for BTEX detection using portable deep-UV absorption spectrophotometry
AU - Khan, Sulaiman
AU - Newport, David
AU - Le Calvé, Stéphane
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2020/12/15
Y1 - 2020/12/15
N2 - Monitoring of indoor air quality by detecting individual airborne pollutant is essential for maintaining a healthy indoor environment. UV absorption spectrophotometry coupled with gas chromatography offers a reliable, self-referenced and non-destructive technique for the identification and detection of gas molecules. This paper presents a deep-UV absorption spectrophotometer coupled with a micro gas-chromatography (μGC) for the detection of benzene, toluene, ethylbenzene and xylenes (BTEX). The spectrophotometer was developed using a low-volume gas cell made of PolyEther Ether Ketone (PEEK) polymer tube, connected with a portable deep-UV LED and photomultiplier tube. The performance of the detection unit was evaluated with different concentrations of toluene (5–100 ppm) in nitrogen and a sensitivity of 107.1 μAU/ppm with a limit of detection of 1.41 ppm was obtained. The detector was incorporated into a micro gas-chromatography setup and high quality chromatograms, having all the peaks separated with good repeatability were obtained for BTEX molecules. The deep-UV absorption spectrophotometer has low-volume, low-cost, and ease of development and integration. While demonstrated for BTEX in a nitrogen carrier gas, the spectrometer has the potential to be applied to chromatographic analysis of different analytes in gas or liquid media.
AB - Monitoring of indoor air quality by detecting individual airborne pollutant is essential for maintaining a healthy indoor environment. UV absorption spectrophotometry coupled with gas chromatography offers a reliable, self-referenced and non-destructive technique for the identification and detection of gas molecules. This paper presents a deep-UV absorption spectrophotometer coupled with a micro gas-chromatography (μGC) for the detection of benzene, toluene, ethylbenzene and xylenes (BTEX). The spectrophotometer was developed using a low-volume gas cell made of PolyEther Ether Ketone (PEEK) polymer tube, connected with a portable deep-UV LED and photomultiplier tube. The performance of the detection unit was evaluated with different concentrations of toluene (5–100 ppm) in nitrogen and a sensitivity of 107.1 μAU/ppm with a limit of detection of 1.41 ppm was obtained. The detector was incorporated into a micro gas-chromatography setup and high quality chromatograms, having all the peaks separated with good repeatability were obtained for BTEX molecules. The deep-UV absorption spectrophotometer has low-volume, low-cost, and ease of development and integration. While demonstrated for BTEX in a nitrogen carrier gas, the spectrometer has the potential to be applied to chromatographic analysis of different analytes in gas or liquid media.
KW - Absorption spectrophotometry
KW - Gas sensors
KW - Micro gas chromatography
KW - PEEK gas cell
KW - Photomultiplier tubes
KW - UV LEDs
UR - http://www.scopus.com/inward/record.url?scp=85089338121&partnerID=8YFLogxK
U2 - 10.1016/j.saa.2020.118727
DO - 10.1016/j.saa.2020.118727
M3 - Article
C2 - 32799186
AN - SCOPUS:85089338121
SN - 1386-1425
VL - 243
SP - 118727
JO - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
JF - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
M1 - 118727
ER -