Manufacture and Buckling Test of a Variable-Stiffness, Variable-Thickness Composite Cylinder Under Axial Compression

Reece L. Lincoln, Paul M. Weaver, Alberto Pirrera, Rainer M.J. Groh, Evangelos Zympeloudis

Research output: Contribution to journalArticlepeer-review

Abstract

Variable-angle tow (VAT) manufacturing methods significantly increase the design space for elastic tailoring of composite structures by smoothly changing fiber angle and ply thickness across a component. Rapid tow shearing (RTS) is a VAT manufacturing technique that uses in-plane shearing (rather than in-plane bending) to steer tows of dry or pre-impregnated fibers. RTS offers a number of benefits over conventional bending-driven steering processes, including tessellation of adjacent tow courses; no overlaps or gaps between tows; and no fiber wrinkling or bridging. Further to this, RTS offers an additional design variable: fiber orientation to tow thickness coupling due to the volumetric relation between tow shearing and the tow’s thickness and width. Previous computational work has shown that through a judicious choice of curvilinear fiber trajectories along a cylinder’s length and across its circumference, the imperfection sensitivity of cylindrical shells under axial compression can be reduced and load-carrying capacity increased. The present work aims to verify these predictions by manufacturing and testing two cylinders: an RTS cylinder and a straight-fiber, quasi-isotropic cylinder as a benchmark. The tow-steered manufacturing process, imperfection measurements, instrumentation, and buckling tests of both cylinders are discussed herein. The experimental tests results are compared against high-fidelity geometrically nonlinear finite element models that include measured geometric and loading imperfections before and during the tests. Finally, a discussion is provided on the outstanding challenges in designing and manufacturing RTS cylinders for primary aerostructures.

Original languageEnglish
Pages (from-to)1849-1862
Number of pages14
JournalAIAA Journal
Volume61
Issue number4
DOIs
Publication statusPublished - Apr 2023

Fingerprint

Dive into the research topics of 'Manufacture and Buckling Test of a Variable-Stiffness, Variable-Thickness Composite Cylinder Under Axial Compression'. Together they form a unique fingerprint.

Cite this