TY - JOUR
T1 - MazeGen
T2 - A Low-Code Framework for Bootstrapping Robotic Navigation Scenarios for Smart Manufacturing Contexts
AU - Guevara, Ivan Hugo
AU - Margaria, Tiziana
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/5
Y1 - 2023/5
N2 - In this research, we describe the MazeGen framework (as a maze generator), which generates navigation scenarios using Grammatical Evolution for robots or drones to navigate. The maze generator uses evolutionary algorithms to create robotic navigation scenarios with different semantic levels along a scenario profile. Grammatical Evolution is a Machine Learning technique from the Evolutionary Computing branch that uses a BNF grammar to describe the language of the possible scenario universe and a numerical encoding of individual scenarios along that grammar. Through a mapping process, it converts new numerical individuals obtained by operations on the parents’ encodings to a new solution by means of grammar. In this context, the grammar describes the scenario elements and some composition rules. We also analyze associated concepts of complexity, understanding complexity as the cost of production of the scenario and skill levels needed to move around the maze. Preliminary results and statistics evidence a low correlation between complexity and the number of obstacles placed, as configurations with more difficult obstacle dispositions were found in the early stages of the evolution process and also when analyzing mazes taking into account their semantic meaning, earlier versions of the experiment not only resulted as too simplistic for the Smart Manufacturing domain, but also lacked correlation with possible real-world scenarios, as was evidenced in our experiments, where the most semantic meaning results had the lowest fitness score. They also show the emerging technology status of this approach, as we still need to find out how to reliably find solvable scenarios and characterize those belonging to the same class of equivalence. Despite being an emerging technology, MazeGen allows users to simplify the process of building configurations for smart manufacturing environments, by making it faster, more efficient, and reproducible, and it also puts the non-expert programmer in the center of the development process, as little boilerplate code is needed.
AB - In this research, we describe the MazeGen framework (as a maze generator), which generates navigation scenarios using Grammatical Evolution for robots or drones to navigate. The maze generator uses evolutionary algorithms to create robotic navigation scenarios with different semantic levels along a scenario profile. Grammatical Evolution is a Machine Learning technique from the Evolutionary Computing branch that uses a BNF grammar to describe the language of the possible scenario universe and a numerical encoding of individual scenarios along that grammar. Through a mapping process, it converts new numerical individuals obtained by operations on the parents’ encodings to a new solution by means of grammar. In this context, the grammar describes the scenario elements and some composition rules. We also analyze associated concepts of complexity, understanding complexity as the cost of production of the scenario and skill levels needed to move around the maze. Preliminary results and statistics evidence a low correlation between complexity and the number of obstacles placed, as configurations with more difficult obstacle dispositions were found in the early stages of the evolution process and also when analyzing mazes taking into account their semantic meaning, earlier versions of the experiment not only resulted as too simplistic for the Smart Manufacturing domain, but also lacked correlation with possible real-world scenarios, as was evidenced in our experiments, where the most semantic meaning results had the lowest fitness score. They also show the emerging technology status of this approach, as we still need to find out how to reliably find solvable scenarios and characterize those belonging to the same class of equivalence. Despite being an emerging technology, MazeGen allows users to simplify the process of building configurations for smart manufacturing environments, by making it faster, more efficient, and reproducible, and it also puts the non-expert programmer in the center of the development process, as little boilerplate code is needed.
KW - evolutionary computing
KW - machine learning
KW - navigation scenarios
KW - smart manufacturing
UR - http://www.scopus.com/inward/record.url?scp=85159171741&partnerID=8YFLogxK
U2 - 10.3390/electronics12092058
DO - 10.3390/electronics12092058
M3 - Article
AN - SCOPUS:85159171741
SN - 2079-9292
VL - 12
JO - Electronics (Switzerland)
JF - Electronics (Switzerland)
IS - 9
M1 - 2058
ER -