Microlocal analysis of sar imaging of a dynamic reflectivity function

Research output: Contribution to journalArticlepeer-review

Abstract

In this article we consider four particular cases of synthetic aperture radar imaging with moving objects. In each case, we analyze the forward operator F and the normal operator FF, which appear in the mathematical expression for the recovered reflectivity function (i.e., the image). In general, by applying the backprojection operator F to the scattered waveform (i.e., the data), artifacts appear in the reconstructed image. In the first case, the full data case, we show that FF is a pseudodifferential operator which implies that there is no artifact. In the other three cases, which have less data, we show that FF belongs to a class of distributions associated to two cleanly intersecting Lagrangians Ip,l(,), where is associated to a strong artifact. At the and of the article, we show how to microlocally reduce the strength of the artifact.

Original languageEnglish
Pages (from-to)2767-2789
Number of pages23
JournalSIAM Journal on Mathematical Analysis
Volume45
Issue number5
DOIs
Publication statusPublished - 2013

Keywords

  • Blow down singularities
  • Fourier integral operators
  • Microlocal analysis
  • Reduction of artifacts
  • Synthetic aperture radar imaging with moving targets

Fingerprint

Dive into the research topics of 'Microlocal analysis of sar imaging of a dynamic reflectivity function'. Together they form a unique fingerprint.

Cite this