Molecular dynamics simulations show that bound Mg2+ contributes to amino acid and aminoacyl adenylate binding specificity in aspartyl-tRNA synthetase through long range electrostatic interactions

Damien Thompson, Thomas Simonson

Research output: Contribution to journalArticlepeer-review

Abstract

Molecular recognition between the aminoacyl-tRNA synthetase enzymes and their cognate amino acid ligands is essential for the faithful translation of the genetic code. In aspartyl-tRNA synthetase (AspRS), the co-substrate ATP binds preferentially with three associated Mg2+ cations in an unusual, bent geometry. The Mg2+ cations play a structural role and are thought to also participate catalytically in the enzyme reaction. Co-binding of the ATP·Mg32+ complex was shown recently to increase the Asp/Asn binding free energy difference, indicating that amino acid discrimination is substrate-assisted. Here, we used molecular dynamics free energy simulations and continuum electrostatic calculations to resolve two related questions. First, we showed that if one of the Mg2+ cations is removed, the Asp/Asn binding specificity is strongly reduced. Second, we computed the relative stabilities of the three-cation complex and the 2-cation complexes. We found that the 3-cation complex is overwhelmingly favored at ordinary magnesium concentrations, so that the protein is protected against the 2-cation state. In the homologous LysRS, the 3-cation complex was also strongly favored, but the third cation did not affect Lys binding. In tRNA-bound AspRS, the single remaining Mg2+ cation strongly favored the Asp-adenylate substrate relative to Asn-adenylate. Thus, in addition to their structural and catalytic roles, the Mg2+ cations contribute to specificity in AspRS through long range electrostatic interactions with the Asp side chain in both the pre- and post-adenylation states.

Original languageEnglish
Pages (from-to)23792-23803
Number of pages12
JournalJournal of Biological Chemistry
Volume281
Issue number33
DOIs
Publication statusPublished - 18 Aug 2006

Fingerprint

Dive into the research topics of 'Molecular dynamics simulations show that bound Mg2+ contributes to amino acid and aminoacyl adenylate binding specificity in aspartyl-tRNA synthetase through long range electrostatic interactions'. Together they form a unique fingerprint.

Cite this