Nanoelectrical analysis of single molecules and atomic-scale materials at the solid/liquid interface

Peter Nirmalraj, Damien Thompson, Agustín Molina-Ontoria, Marilyne Sousa, Nazario Martín, Bernd Gotsmann, Heike Riel

Research output: Contribution to journalArticlepeer-review

Abstract

Evaluating the built-in functionality of nanomaterials under practical conditions is central for their proposed integration as active components in next-generation electronics. Low-dimensional materials from single atoms to molecules have been consistently resolved and manipulated under ultrahigh vacuum at low temperatures. At room temperature, atomic-scale imaging has also been performed by probing materials at the solid/liquid interface. We exploit this electrical interface to develop a robust electronic decoupling platform that provides precise information on molecular energy levels recorded using in situ scanning tunnelling microscopy/spectroscopy with high spatial and energy resolution in a high-density liquid environment. Our experimental findings, supported by ab initio electronic structure calculations and atomic-scale molecular dynamics simulations, reveal direct mapping of single-molecule structure and resonance states at the solid/liquid interface. We further extend this approach to resolve the electronic structure of graphene monolayers at atomic length scales under standard roomerature operating conditions.

Original languageEnglish
Pages (from-to)947-955
Number of pages9
JournalNature Materials
Volume13
Issue number10
DOIs
Publication statusPublished - 1 Oct 2014

Fingerprint

Dive into the research topics of 'Nanoelectrical analysis of single molecules and atomic-scale materials at the solid/liquid interface'. Together they form a unique fingerprint.

Cite this