Abstract
A non-precious metal electrocatalyst has been developed for the oxygen reduction reaction based on nanoporous molybdenum carbide (nano-Mo2C) wires through a facile calcination of sub-nanometer periodic organic-inorganic hybrid nanowires. The highly dispersed Mo2C wires were composed of 10-15 nm nanocrystals with a mesopore size of 3.3 nm. The properties of nano-Mo2C wires were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction and N 2 adsorption/desorption porosimetry. The highly active surface area and enriched nanoporosity for nano-Mo2C wires are unique features that make them a high-performance electrocatalyst for oxygen reduction in an alkaline medium. The electrocatalysis and reaction kinetics results show that nano-Mo2C-based materials can be developed as new catalysts with high activity at low cost for electrochemical energy conversion applications.
Original language | English |
---|---|
Pages (from-to) | 10088-10094 |
Number of pages | 7 |
Journal | Physical Chemistry Chemical Physics |
Volume | 16 |
Issue number | 21 |
DOIs | |
Publication status | Published - 7 Jun 2014 |
Externally published | Yes |