@inproceedings{3900ca112eb947e593ce66873016fb45,
title = "Near Field iToF LIDAR Depth Improvement from Limited Number of Shots",
abstract = "Indirect Time of Flight LiDARs can indirectly calculate the scene's depth from the phase shift angle between transmitted and received laser signals with amplitudes modulated at a predefined frequency. Unfortunately, this method generates ambiguity in calculated depth when the phase shift angle value exceeds 2p. Current state-of-the-art methods use raw samples generated using two distinct modulation frequencies to overcome this ambiguity problem. However, this comes at the cost of increasing laser components' stress and raising their temperature, which reduces their lifetime and increases power consumption. In our work, we study two different methods to recover the entire depth range of the LiDAR using fewer raw data sample shots from a single modulation frequency with the support of sensor's gray scale output to reduce the laser components' stress and power consumption.",
keywords = "ambiguity, depth correction, estimation, iTOF, LIDAR, near field",
author = "Mena Nagiub and Thorsten Beuth and Ganesh Sistu and Heinrich Gotzig and Ciar{\'a}n Eising",
note = "Publisher Copyright: {\textcopyright} 2023 IEEE.; 97th IEEE Vehicular Technology Conference, VTC 2023-Spring ; Conference date: 20-06-2023 Through 23-06-2023",
year = "2023",
doi = "10.1109/VTC2023-Spring57618.2023.10199475",
language = "English",
series = "IEEE Vehicular Technology Conference",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
booktitle = "2023 IEEE 97th Vehicular Technology Conference, VTC 2023-Spring - Proceedings",
}