TY - JOUR
T1 - Network cloning unfolds the effect of clustering on dynamical processes
AU - Faqeeh, Ali
AU - Melnik, Sergey
AU - Gleeson, James P.
N1 - Publisher Copyright:
© 2015 American Physical Society.
PY - 2015/5/14
Y1 - 2015/5/14
N2 - We introduce network L-cloning, a technique for creating ensembles of random networks from any given real-world or artificial network. Each member of the ensemble is an L-cloned network constructed from L copies of the original network. The degree distribution of an L-cloned network and, more importantly, the degree-degree correlation between and beyond nearest neighbors are identical to those of the original network. The density of triangles in an L-cloned network, and hence its clustering coefficient, is reduced by a factor of L compared to those of the original network. Furthermore, the density of loops of any fixed length approaches zero for sufficiently large values of L. Other variants of L-cloning allow us to keep intact the short loops of certain lengths. As an application, we employ these network cloning methods to investigate the effect of short loops on dynamical processes running on networks and to inspect the accuracy of corresponding tree-based theories. We demonstrate that dynamics on L-cloned networks (with sufficiently large L) are accurately described by the so-called adjacency tree-based theories, examples of which include the message passing technique, some pair approximation methods, and the belief propagation algorithm used respectively to study bond percolation, SI epidemics, and the Ising model.
AB - We introduce network L-cloning, a technique for creating ensembles of random networks from any given real-world or artificial network. Each member of the ensemble is an L-cloned network constructed from L copies of the original network. The degree distribution of an L-cloned network and, more importantly, the degree-degree correlation between and beyond nearest neighbors are identical to those of the original network. The density of triangles in an L-cloned network, and hence its clustering coefficient, is reduced by a factor of L compared to those of the original network. Furthermore, the density of loops of any fixed length approaches zero for sufficiently large values of L. Other variants of L-cloning allow us to keep intact the short loops of certain lengths. As an application, we employ these network cloning methods to investigate the effect of short loops on dynamical processes running on networks and to inspect the accuracy of corresponding tree-based theories. We demonstrate that dynamics on L-cloned networks (with sufficiently large L) are accurately described by the so-called adjacency tree-based theories, examples of which include the message passing technique, some pair approximation methods, and the belief propagation algorithm used respectively to study bond percolation, SI epidemics, and the Ising model.
UR - http://www.scopus.com/inward/record.url?scp=84930672726&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.91.052807
DO - 10.1103/PhysRevE.91.052807
M3 - Article
AN - SCOPUS:84930672726
SN - 1539-3755
VL - 91
JO - Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
JF - Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
IS - 5
M1 - 052807
ER -