TY - JOUR
T1 - Network pharmacology and topological analysis on tibolone metabolites and their molecular mechanisms in traumatic brain injury
AU - Barreto, George E.
AU - Gonzalez, Janneth
AU - Ramírez, David
N1 - Publisher Copyright:
© 2023 The Authors
PY - 2023/9
Y1 - 2023/9
N2 - Traumatic brain injury (TBI) is a pathology of great social impact, affecting millions of people worldwide. Despite the scientific advances to improve the management of TBI in recent years, we still do not have a specific treatment that controls the inflammatory process after mechanical trauma. The discovery and implementation of new treatments is a long and expensive process, making the repurpose of approved drugs for other pathologies a clinical interest. Tibolone is a drug in use for the treatment of symptoms associated with menopause and has been shown to have a broad spectrum of actions by regulating estrogen, androgen and progesterone receptors, whose activation exerts potent anti-inflammatory and antioxidant effects. In the present study, we aimed to investigate the therapeutic potential of the tibolone metabolites 3α-Hydroxytibolone, 3β-Hydroxytibolone, and Δ4-Tibolone as a possible therapy in TBI using network pharmacology and network topology analysis. Our results demonstrate that the estrogenic component mediated by the α and β metabolites can regulate synaptic transmission and cell metabolism, while the Δ metabolite may be involved in modulating the post-TBI inflammatory process. We identified several molecular targets, including KDR, ESR2, AR, NR3C1, PPARD, and PPARA, which are known to play critical roles in the pathogenesis of TBI. Tibolone metabolites were predicted to regulate the expression of key genes involved in oxidative stress, inflammation, and apoptosis. Overall, the repurposing of tibolone as a neuroprotective treatment for TBI holds promise for future clinical trials. However, further studies are needed to confirm its efficacy and safety in TBI patients.
AB - Traumatic brain injury (TBI) is a pathology of great social impact, affecting millions of people worldwide. Despite the scientific advances to improve the management of TBI in recent years, we still do not have a specific treatment that controls the inflammatory process after mechanical trauma. The discovery and implementation of new treatments is a long and expensive process, making the repurpose of approved drugs for other pathologies a clinical interest. Tibolone is a drug in use for the treatment of symptoms associated with menopause and has been shown to have a broad spectrum of actions by regulating estrogen, androgen and progesterone receptors, whose activation exerts potent anti-inflammatory and antioxidant effects. In the present study, we aimed to investigate the therapeutic potential of the tibolone metabolites 3α-Hydroxytibolone, 3β-Hydroxytibolone, and Δ4-Tibolone as a possible therapy in TBI using network pharmacology and network topology analysis. Our results demonstrate that the estrogenic component mediated by the α and β metabolites can regulate synaptic transmission and cell metabolism, while the Δ metabolite may be involved in modulating the post-TBI inflammatory process. We identified several molecular targets, including KDR, ESR2, AR, NR3C1, PPARD, and PPARA, which are known to play critical roles in the pathogenesis of TBI. Tibolone metabolites were predicted to regulate the expression of key genes involved in oxidative stress, inflammation, and apoptosis. Overall, the repurposing of tibolone as a neuroprotective treatment for TBI holds promise for future clinical trials. However, further studies are needed to confirm its efficacy and safety in TBI patients.
KW - Network pharmacology
KW - Repurposing
KW - Tibolone
KW - Tibolone metabolites
KW - Traumatic brain injury
UR - http://www.scopus.com/inward/record.url?scp=85164384026&partnerID=8YFLogxK
U2 - 10.1016/j.biopha.2023.115089
DO - 10.1016/j.biopha.2023.115089
M3 - Article
C2 - 37418975
AN - SCOPUS:85164384026
SN - 0753-3322
VL - 165
SP - 115089
JO - Biomedicine and Pharmacotherapy
JF - Biomedicine and Pharmacotherapy
M1 - 115089
ER -