TY - JOUR
T1 - Numerical investigation of the effect of rectangular and semicircular cavities filled with phase change materials installed on the solar wall
AU - Mustafa, Jawed
AU - Alqaed, Saeed
AU - Almehmadi, Fahad Awjah
AU - Husain, Shahid
AU - Jamil, Basharat
AU - Sharifpur, Mohsen
N1 - Publisher Copyright:
© The Author(s) 2023.
PY - 2024/7
Y1 - 2024/7
N2 - The use of alternative energy sources, particularly solar energy, in buildings is rising and spreading around the globe. In this paper, a solar wall is analyzed using a numerical method. On the wall, a number of obstacles are placed in two shapes, rectangular (REC) and semicircular (SEC). The cavities are filled with organic phase-change materials. This study was performed in 7 h in the absence of solar radiation on the wall for different dimensions of obstacles in 5 different modes. Various temperatures have been investigated, including exhaust air temperature (TAR), Trombe wall temperature (TWL), and mean volume % of molten PCM in cavities. COMSOL software is used to carry out this numerical study. The results of this study showed that the use of SECs compared to RECs causes the TWL to be higher. In the most extreme case, at a 16 cm aspect ratio, the use of SECs gives a 2.1 °C increase in TWL relative to the REC one. The outlet TAR is also increased by the usage of SECs. The use of larger dimensions of the cavities has increased the TAR leaving the wall so that the TAR after 7 h of the absence of solar radiation, in the most significant case of SECs, was more than 295.5 K. The use of SECs also increases the PCM freezing time. In the largest case of cavities, using SECs increases the freezing time by 15 min compared to RECs.
AB - The use of alternative energy sources, particularly solar energy, in buildings is rising and spreading around the globe. In this paper, a solar wall is analyzed using a numerical method. On the wall, a number of obstacles are placed in two shapes, rectangular (REC) and semicircular (SEC). The cavities are filled with organic phase-change materials. This study was performed in 7 h in the absence of solar radiation on the wall for different dimensions of obstacles in 5 different modes. Various temperatures have been investigated, including exhaust air temperature (TAR), Trombe wall temperature (TWL), and mean volume % of molten PCM in cavities. COMSOL software is used to carry out this numerical study. The results of this study showed that the use of SECs compared to RECs causes the TWL to be higher. In the most extreme case, at a 16 cm aspect ratio, the use of SECs gives a 2.1 °C increase in TWL relative to the REC one. The outlet TAR is also increased by the usage of SECs. The use of larger dimensions of the cavities has increased the TAR leaving the wall so that the TAR after 7 h of the absence of solar radiation, in the most significant case of SECs, was more than 295.5 K. The use of SECs also increases the PCM freezing time. In the largest case of cavities, using SECs increases the freezing time by 15 min compared to RECs.
KW - Building
KW - Numerical method
KW - Phase change materials
KW - Solar energy
UR - http://www.scopus.com/inward/record.url?scp=85164595911&partnerID=8YFLogxK
U2 - 10.1007/s11356-023-28244-y
DO - 10.1007/s11356-023-28244-y
M3 - Article
C2 - 37438511
AN - SCOPUS:85164595911
SN - 0944-1344
VL - 31
SP - 46417
EP - 46446
JO - Environmental Science and Pollution Research
JF - Environmental Science and Pollution Research
IS - 34
ER -