TY - JOUR
T1 - Oil from Mullet Roe Byproducts
T2 - Effect of Oil Extraction Method on Human Erythrocytes and Platelets
AU - Tsamesidis, Ioannis
AU - Tzika, Paraskevi
AU - Georgiou, Despoina
AU - Charisis, Aggelos
AU - Hans, Sakshi
AU - Lordan, Ronan
AU - Zabetakis, Ioannis
AU - Kalogianni, Eleni P.
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2024/1
Y1 - 2024/1
N2 - Background: The valorization of byproducts to obtain high nutritional value foods is of utmost importance for our planet where the population is booming. Among these products are oils rich in ω-3 fatty acids produced from fishery byproducts. Recently, mullet roe oil from roe byproducts was produced that was rich in the ω-3 fatty acids eicosatetraenoic acid (EPA) and docosahexaenoic acid (DHA). Oils are customarily characterized for their composition and degree of oxidation but little is known of their biological effects, especially the effect of the extraction method. Methods: The purpose of this study was to evaluate the effects of freshly extracted mullet roe oil from mullet roe byproducts and the effect of the extraction method on human red blood cells (hRBCs) and platelets. To this end, the hemocompatibility (cytotoxicity), oxidative effects, and erythrocyte membrane changes were examined after 1 and 24 h of incubation. Antiplatelet effects were also assessed in vitro. Results: The expeller press oil extraction method and alcalase-assisted extraction produced the most biocompatible oils, as shown by hemocompatibility measurements and the absence of erythrocyte membrane alterations. Solvent extracts and protease-assisted extraction oils resulted in the rupture of red blood cells at different examined dilutions, creating hemolysis. Conclusions: It seems that the proper functioning of oil–erythrocyte interactions cannot be explained solely by ROS. Further investigations combining chemical analysis with oil–cell interactions could be used as an input to design high nutritional value oils using green extraction technologies. All samples exhibited promising antiplatelet and antiblood clotting effects in vitro.
AB - Background: The valorization of byproducts to obtain high nutritional value foods is of utmost importance for our planet where the population is booming. Among these products are oils rich in ω-3 fatty acids produced from fishery byproducts. Recently, mullet roe oil from roe byproducts was produced that was rich in the ω-3 fatty acids eicosatetraenoic acid (EPA) and docosahexaenoic acid (DHA). Oils are customarily characterized for their composition and degree of oxidation but little is known of their biological effects, especially the effect of the extraction method. Methods: The purpose of this study was to evaluate the effects of freshly extracted mullet roe oil from mullet roe byproducts and the effect of the extraction method on human red blood cells (hRBCs) and platelets. To this end, the hemocompatibility (cytotoxicity), oxidative effects, and erythrocyte membrane changes were examined after 1 and 24 h of incubation. Antiplatelet effects were also assessed in vitro. Results: The expeller press oil extraction method and alcalase-assisted extraction produced the most biocompatible oils, as shown by hemocompatibility measurements and the absence of erythrocyte membrane alterations. Solvent extracts and protease-assisted extraction oils resulted in the rupture of red blood cells at different examined dilutions, creating hemolysis. Conclusions: It seems that the proper functioning of oil–erythrocyte interactions cannot be explained solely by ROS. Further investigations combining chemical analysis with oil–cell interactions could be used as an input to design high nutritional value oils using green extraction technologies. All samples exhibited promising antiplatelet and antiblood clotting effects in vitro.
KW - antiplatelet therapeutics
KW - cytotoxicity
KW - hemocompatibility
KW - marine oil
KW - mullet roe
KW - oil extraction
KW - reactive oxygen species
UR - http://www.scopus.com/inward/record.url?scp=85181925967&partnerID=8YFLogxK
U2 - 10.3390/foods13010079
DO - 10.3390/foods13010079
M3 - Article
AN - SCOPUS:85181925967
SN - 2304-8158
VL - 13
JO - Foods
JF - Foods
IS - 1
M1 - 79
ER -