On improving grammatical evolution performance in symbolic regression with attribute grammar

Muhammad Rezaul Karim, Conor Ryan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This paper shows how attribute grammar (AG) can be used with Grammatical Evolution (GE) to avoid invalidators in the symbolic regression solutions generated by GE. In this paper, we also show how interval arithmetic can be implemented with AG to avoid selection of certain arithmetic operators or transcendental functions, whenever necessary to avoid infinite output bounds in the solutions. Results and analysis demonstrate that with the proposed extensions, GE shows significantly less overfitting than standard GE and Koza's GP, on the tested symbolic regression problems.

Original languageEnglish
Title of host publicationGECCO 2014 - Companion Publication of the 2014 Genetic and Evolutionary Computation Conference
PublisherAssociation for Computing Machinery
Pages139-140
Number of pages2
ISBN (Print)9781450328814
DOIs
Publication statusPublished - 2014
Event16th Genetic and Evolutionary Computation Conference Companion, GECCO 2014 Companion - Vancouver, BC, Canada
Duration: 12 Jul 201416 Jul 2014

Publication series

NameGECCO 2014 - Companion Publication of the 2014 Genetic and Evolutionary Computation Conference

Conference

Conference16th Genetic and Evolutionary Computation Conference Companion, GECCO 2014 Companion
Country/TerritoryCanada
CityVancouver, BC
Period12/07/1416/07/14

Keywords

  • Attribute grammar
  • Symbolic regression

Fingerprint

Dive into the research topics of 'On improving grammatical evolution performance in symbolic regression with attribute grammar'. Together they form a unique fingerprint.

Cite this