TY - GEN
T1 - On the characterisation of finned and finless heat sinks for portable electronics
AU - Egan, V.
AU - Walsh, P.
AU - Walsh, E.
AU - Grimes, R.
PY - 2007
Y1 - 2007
N2 - Reliable and efficient cooling solutions for portable electronic devices are now at the forefront of research due to consumer demand for manufacturers to downscale their existing technologies. The power required for these technologies now has to be dissipated over smaller areas resulting in elevated heat fluxes. The most popular choice among engineers in terms of cooling solutions is to integrate a fan with a heat sink and for portable electronic devices this involves the use of a low profile solution. In this paper an experimental investigation on the thermal performance of a finned and finless heat sink integrated with an axial fan, for the purpose of cooling a microchip, is presented. The objective is to characterise the performance of each heat sink in terms of thermal resistance and to develop an understanding of the flow structures in such systems. One of the smallest commercially available fans is used in conjunction with each heat sink giving a total footprint area of 465m2 and profile height of 5mm. Thermal resistances are measured over a range of fan speeds and detailed velocity measurements were taken of the flow within the heat sinks using Particle Image Velocimetry (PIV). The thermal analysis results indicate that the thermal resistance of the system is of order 30 deg C/W for both heat sinks. However, the finless heat sink resulted in slightly lower values over a range of intermediate fan speeds. Hence, indicating that the maximum heat transfer density, for a range of fan speeds, can be achieved with a finless heat sink. The results also define the limiting heat fluxes that can be dissipated in low profile miniature applications.
AB - Reliable and efficient cooling solutions for portable electronic devices are now at the forefront of research due to consumer demand for manufacturers to downscale their existing technologies. The power required for these technologies now has to be dissipated over smaller areas resulting in elevated heat fluxes. The most popular choice among engineers in terms of cooling solutions is to integrate a fan with a heat sink and for portable electronic devices this involves the use of a low profile solution. In this paper an experimental investigation on the thermal performance of a finned and finless heat sink integrated with an axial fan, for the purpose of cooling a microchip, is presented. The objective is to characterise the performance of each heat sink in terms of thermal resistance and to develop an understanding of the flow structures in such systems. One of the smallest commercially available fans is used in conjunction with each heat sink giving a total footprint area of 465m2 and profile height of 5mm. Thermal resistances are measured over a range of fan speeds and detailed velocity measurements were taken of the flow within the heat sinks using Particle Image Velocimetry (PIV). The thermal analysis results indicate that the thermal resistance of the system is of order 30 deg C/W for both heat sinks. However, the finless heat sink resulted in slightly lower values over a range of intermediate fan speeds. Hence, indicating that the maximum heat transfer density, for a range of fan speeds, can be achieved with a finless heat sink. The results also define the limiting heat fluxes that can be dissipated in low profile miniature applications.
KW - Electronics cooling
KW - Heat sink design
KW - Particle image velocimetry
UR - http://www.scopus.com/inward/record.url?scp=37249076895&partnerID=8YFLogxK
U2 - 10.1115/ICNMM2007-30089
DO - 10.1115/ICNMM2007-30089
M3 - Conference contribution
AN - SCOPUS:37249076895
SN - 079184272X
SN - 9780791842720
T3 - Proceedings of the 5th International Conference on Nanochannels, Microchannels and Minichannels, ICNMM2007
SP - 209
EP - 218
BT - Proceedings of the 5th International Conference on Nanochannels, Microchannels and Minichannels, ICNMM2007
T2 - 5th International Conference on Nanochannels, Microchannels and Minichannels, ICNMM2007
Y2 - 18 June 2007 through 20 June 2007
ER -