On the effect of embedding hierarchy within multi-objective optimization for evolving symbolic regression models

Atif Rafiq, Enrique Naredo, Meghana Kshirsagar, Conor Ryan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Symbolic Regression is sometimes treated as a multi-objective optimization problem where two objectives (Accuracy and Complexity) are optimized simultaneously. In this paper, we propose a novel approach, Hierarchical Multi-objective Symbolic Regression (HMS), where we investigate the effect of imposing a hierarchy on multiple objectives in Symbolic Regression. HMS works in two levels. In the first level, an initial random population is evolved using a single objective (Accuracy), then, when a simple trigger occurs (the current best fitness is five times better than best fitness of the initial, random population) half of the population is promoted to the next level where another objective (complexity) is incorporated. This new, smaller, population subsequently evolves using a multi-objective fitness function. Various complexity measures are tested and as such are explicitly defined as one of the objectives in addition to performance (accuracy). The validation of HMS is performed on four benchmark Symbolic Regression problems with varying difficulty. The evolved Symbolic Regression models are either competitive with or better than models produced with standard approaches in terms of performance where performance is the accuracy measured as Root Mean Square Error. The solutions are better in terms of size, effectively scaling down the computational cost.

Original languageEnglish
Title of host publicationGECCO 2022 Companion - Proceedings of the 2022 Genetic and Evolutionary Computation Conference
PublisherAssociation for Computing Machinery, Inc
Pages594-597
Number of pages4
ISBN (Electronic)9781450392686
DOIs
Publication statusPublished - 9 Jul 2022
Event2022 Genetic and Evolutionary Computation Conference, GECCO 2022 - Virtual, Online, United States
Duration: 9 Jul 202213 Jul 2022

Publication series

NameGECCO 2022 Companion - Proceedings of the 2022 Genetic and Evolutionary Computation Conference

Conference

Conference2022 Genetic and Evolutionary Computation Conference, GECCO 2022
Country/TerritoryUnited States
CityVirtual, Online
Period9/07/2213/07/22

Keywords

  • complexity in symbolic regression
  • hierarchical fitness function (HFF)
  • multi-objective symbolic regression
  • pyramid

Fingerprint

Dive into the research topics of 'On the effect of embedding hierarchy within multi-objective optimization for evolving symbolic regression models'. Together they form a unique fingerprint.

Cite this