On the Unreasonable Effectiveness of Centroids in Image Retrieval

Mikołaj Wieczorek, Barbara Rychalska, Jacek Dąbrowski

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Image retrieval task consists of finding similar images to a query image from a set of gallery (database) images. Such systems are used in various applications e.g. person re-identification (ReID) or visual product search. Despite active development of retrieval models it still remains a challenging task mainly due to large intra-class variance caused by changes in view angle, lighting, background clutter or occlusion, while inter-class variance may be relatively low. A large portion of current research focuses on creating more robust features and modifying objective functions, usually based on Triplet Loss. Some works experiment with using centroid/proxy representation of a class to alleviate problems with computing speed and hard samples mining used with Triplet Loss. However, these approaches are used for training alone and discarded during the retrieval stage. In this paper we propose to use the mean centroid representation both during training and retrieval. Such an aggregated representation is more robust to outliers and assures more stable features. As each class is represented by a single embedding - the class centroid - both retrieval time and storage requirements are reduced significantly. Aggregating multiple embeddings results in a significant reduction of the search space due to lowering the number of candidate target vectors, which makes the method especially suitable for production deployments. Comprehensive experiments conducted on two ReID and Fashion Retrieval datasets demonstrate effectiveness of our method, which outperforms the current state-of-the-art. We propose centroid training and retrieval as a viable method for both Fashion Retrieval and ReID applications. Our code is available at https://github.com/mikwieczorek/centroids-reid.

Original languageEnglish
Title of host publicationNeural Information Processing - 28th International Conference, ICONIP 2021, Proceedings
EditorsTeddy Mantoro, Minho Lee, Media Anugerah Ayu, Kok Wai Wong, Achmad Nizar Hidayanto
PublisherSpringer Science and Business Media Deutschland GmbH
Pages212-223
Number of pages12
ISBN (Print)9783030922726
DOIs
Publication statusPublished - 2021
Externally publishedYes
Event28th International Conference on Neural Information Processing, ICONIP 2021 - Virtual, Online
Duration: 8 Dec 202112 Dec 2021

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13111 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference28th International Conference on Neural Information Processing, ICONIP 2021
CityVirtual, Online
Period8/12/2112/12/21

Keywords

  • Centroid triplet loss
  • Clothes retrieval
  • Deep learning in fashion
  • Fashion retrieval
  • Person re-identification

Fingerprint

Dive into the research topics of 'On the Unreasonable Effectiveness of Centroids in Image Retrieval'. Together they form a unique fingerprint.

Cite this