Osmoviscoelastic finite element model of the intervertebral disc

Yvonne Schroeder, Wouter Wilson, Jacques M. Huyghe, Frank P.T. Baaijens

Research output: Contribution to journalArticlepeer-review

Abstract

Intervertebral discs have a primarily mechanical role in transmitting loads through the spine. The disc is subjected to a combination of elastic, viscous and osmotic forces; previous 3D models of the disc have typically neglected osmotic forces. The fibril-reinforced poroviscoelastic swelling model, which our group has recently developed, is used to compute the interplay of osmotic, viscous and elastic forces in an intervertebral disc under axial compressive load. The unloaded 3D finite element mesh equilibrates in a physiological solution, and exhibits an intradiscal pressure of about 0.2 MPa. Before and after axial loading the numerically simulated hydrostatic pressure compares well with the experimental ranges measured. Loading the disc decreased the height of the disc and results in an outward bulging of the outer annulus. Fiber stresses were highest on the most outward bulging on the posterior-lateral side. The osmotic forces resulted in tensile hoop stresses, which were higher than typical values in a non-osmotic disc. The computed axial stress profiles reproduced the main features of the stress profiles, in particular the characteristic posterior and anterior stress which were observed experimentally.

Original languageEnglish
Pages (from-to)S361-S371
JournalEuropean Spine Journal
Volume15
Issue numberSUPPL. 3
DOIs
Publication statusPublished - Aug 2006
Externally publishedYes

Keywords

  • Collagen
  • Fibril reinforced finite element model
  • Intervertebral disc
  • Proteoglycans
  • Swelling

Fingerprint

Dive into the research topics of 'Osmoviscoelastic finite element model of the intervertebral disc'. Together they form a unique fingerprint.

Cite this