TY - JOUR
T1 - Osteocalcin
T2 - The extra-skeletal role of a vitamin K-dependent protein in glucose metabolism
AU - O'Connor, Eibhlís M.
AU - Durack, Edel
N1 - Publisher Copyright:
© 2017
PY - 2017/3/1
Y1 - 2017/3/1
N2 - The role of vitamin K in the body has long been associated with blood clotting and coagulation. In more recent times, its role in a range of physiological processes has been described including the regulation of bone and soft tissue calcification, cell growth and proliferation, cognition, inflammation, various oxidative processes and fertility, where osteocalcin is thought to up-regulate the synthesis of the enzymes needed for the biosynthesis of testosterone thereby increasing male fertility. Vitamin K dependent proteins (VKDP) contain γ-carboxyglutamic acid residues which require post-translational, gamma-glutamyl carboxylation by the vitamin K-dependent (VKD) gamma-glutamyl carboxylase enzyme for full functionality. These proteins are present both hepatically and extrahepatically. The role of bone-derived osteocalcin has many physiological roles including, maintenance of bone mass with more recent links to energy metabolism due to the role of the skeleton as an endocrine organ. It has been proposed that insulin binds to bone forming cells (osteoblasts) promoting osteocalcin production which in turn promotes β-cell proliferation, insulin secretion and glucose control. However much of this research has been conducted in animal models with equivocal findings in human studies. This review will discuss the role of osteocalcin in relation to its role in human health, focusing specifically on glucose metabolism.
AB - The role of vitamin K in the body has long been associated with blood clotting and coagulation. In more recent times, its role in a range of physiological processes has been described including the regulation of bone and soft tissue calcification, cell growth and proliferation, cognition, inflammation, various oxidative processes and fertility, where osteocalcin is thought to up-regulate the synthesis of the enzymes needed for the biosynthesis of testosterone thereby increasing male fertility. Vitamin K dependent proteins (VKDP) contain γ-carboxyglutamic acid residues which require post-translational, gamma-glutamyl carboxylation by the vitamin K-dependent (VKD) gamma-glutamyl carboxylase enzyme for full functionality. These proteins are present both hepatically and extrahepatically. The role of bone-derived osteocalcin has many physiological roles including, maintenance of bone mass with more recent links to energy metabolism due to the role of the skeleton as an endocrine organ. It has been proposed that insulin binds to bone forming cells (osteoblasts) promoting osteocalcin production which in turn promotes β-cell proliferation, insulin secretion and glucose control. However much of this research has been conducted in animal models with equivocal findings in human studies. This review will discuss the role of osteocalcin in relation to its role in human health, focusing specifically on glucose metabolism.
KW - Glucose metabolism
KW - Osteocalcin
KW - Vitamin K
UR - http://www.scopus.com/inward/record.url?scp=85011382630&partnerID=8YFLogxK
U2 - 10.1016/j.jnim.2017.01.001
DO - 10.1016/j.jnim.2017.01.001
M3 - Short survey
AN - SCOPUS:85011382630
SN - 2352-3859
VL - 7
SP - 8
EP - 13
JO - Journal of Nutrition and Intermediary Metabolism
JF - Journal of Nutrition and Intermediary Metabolism
ER -