TY - JOUR
T1 - Palladium Nanocubes with {100} Facets for Hydrogen Evolution Reaction
T2 - Synthesis, Experiment and Theory
AU - Saldan, Ivan
AU - Moumaneix, Lilian
AU - Umer, Muhammad
AU - Pavlinak, David
AU - Rihova, Martina
AU - Kolibalova, Eva
AU - Petrus, Josef
AU - Kallio, Tanja
AU - Vandichel, Matthias
AU - Macak, Jan M.
N1 - Publisher Copyright:
© 2025 The Author(s). Small published by Wiley-VCH GmbH.
PY - 2025
Y1 - 2025
N2 - Spatially separated palladium nanocubes (Pd NCs) terminated by {100} facets are synthesized using direct micelles approach. The stepwise seed-mediated growth of Pd NCs is applied for the first time. The resulting Pd NCs are thoroughly characterized by HR-TEM, XPS, Raman, ATR-FTIR, TGA, and STEM-EDX spectroscopies. Some traces of residual stabilizer (polyvinylpyrrolidone, PVP) attached to the vertices of Pd NCs are identified after the necessary separation-washing procedure, however, it is vital to avoid aggregation of the NCs. Pd NCs are subsequently and uniformly loaded on Vulcan carbon (≈20 wt.%) for the electrochemical hydrogen cycling. By post-mortem characterizations, it is revealed that their shape and size remained very stable after all electrochemical experiments. However, a strong effect of the NCs size on their hydrogen interaction is revealed. Hydrogen absorption capacity, measured as the H:Pd ratio, ranges from 0.28 to 0.48, while hydrogen evolution and oxidation reactions (HER and HOR) kinetics decrease from 15.5 to 4.6 mA.mg Pd−1 between ≈15 and 34 nm of Pd NCs, respectively. Theoretical calculations further reveal that adsorption of H atoms and their penetration into the Pd lattice tailors the NCs electronic structure, which in turn controls the kinetics of HER, experimentally observed by the electrochemical tests. This work may pave the way to the design of highly active electrocatalysts for efficient HER stable for a long reactive time. In particular, obtained results might be transferred to active Pd-alloy-based NCs terminated by {100} facets.
AB - Spatially separated palladium nanocubes (Pd NCs) terminated by {100} facets are synthesized using direct micelles approach. The stepwise seed-mediated growth of Pd NCs is applied for the first time. The resulting Pd NCs are thoroughly characterized by HR-TEM, XPS, Raman, ATR-FTIR, TGA, and STEM-EDX spectroscopies. Some traces of residual stabilizer (polyvinylpyrrolidone, PVP) attached to the vertices of Pd NCs are identified after the necessary separation-washing procedure, however, it is vital to avoid aggregation of the NCs. Pd NCs are subsequently and uniformly loaded on Vulcan carbon (≈20 wt.%) for the electrochemical hydrogen cycling. By post-mortem characterizations, it is revealed that their shape and size remained very stable after all electrochemical experiments. However, a strong effect of the NCs size on their hydrogen interaction is revealed. Hydrogen absorption capacity, measured as the H:Pd ratio, ranges from 0.28 to 0.48, while hydrogen evolution and oxidation reactions (HER and HOR) kinetics decrease from 15.5 to 4.6 mA.mg Pd−1 between ≈15 and 34 nm of Pd NCs, respectively. Theoretical calculations further reveal that adsorption of H atoms and their penetration into the Pd lattice tailors the NCs electronic structure, which in turn controls the kinetics of HER, experimentally observed by the electrochemical tests. This work may pave the way to the design of highly active electrocatalysts for efficient HER stable for a long reactive time. In particular, obtained results might be transferred to active Pd-alloy-based NCs terminated by {100} facets.
KW - colloidal synthesis
KW - hydrogen adsorption
KW - nanocubes
KW - palladium
KW - reaction mechanism
KW - surface analysis
UR - http://www.scopus.com/inward/record.url?scp=85217060879&partnerID=8YFLogxK
U2 - 10.1002/smll.202408788
DO - 10.1002/smll.202408788
M3 - Article
AN - SCOPUS:85217060879
SN - 1613-6810
JO - Small
JF - Small
ER -