TY - JOUR
T1 - Phosphatidylinositol 3'-kinase, but not S6-kinase, is required for insulin-like growth factor-I and IL-4 to maintain expression of Bcl-2 and promote survival of myeloid progenitors
AU - Minshall, Christian
AU - Arkins, Sean
AU - Dantzer, Robert
AU - Freund, Gregory G.
AU - Kelley, Keith W.
PY - 1999/4/15
Y1 - 1999/4/15
N2 - Phosphatidylinositol 3'-kinase (PI 3-kinase) catalyzes the formation of 3' phosphoinositides and has been implicated in an intracellular signaling pathway that inhibits apoptosis in both neuronal and hemopoietic cells. Here, we investigated two potential downstream mediators of PI 3-kinase, the serine/threonine p70 S6-kinase (S6-kinase) and the antiapoptotic protein B cell lymphoma-2 (Bcl-2). Stimulation of factor-dependent cell progenitor (FDCP) cells with either IL-4 or insulin-like growth factor (IGF)-I induced a 10-fold increase in the activity of both PI 3-kinase and S6-kinase. Rapamycin blocked 90% of the S6-kinase activity but did not affect PI 3-kinase, whereas wortmannin and LY294002 inhibited the activity of both S6-kinase and PI 3- kinase. However, wortmannin and LY294002, but not rapamycin, blocked the ability of IL-4 and IGF-I to promote cell survival. We next established that IL-3, IL-4, and IGF-I increase expression of Bcl-2 by >3-fold. Pretreatment with inhibitors of PI 3-kinase, but not rapamycin, abrogated expression of Bcl-2 caused by IL-4 and IGF-I, but not by IL-3. None of the cytokines affected expression of the proapoptotic protein Bax, suggesting that all three cytokines were specific for Bcl-2. These data establish that inhibition of PI 3-kinase, but not S6-kinase, blocks the ability of IL-4 and IGF-I to increase expression of Bcl-2 and protect promyeloid cells from apoptosis. The requirement for PI 3-kinase to maintain Bcl-2 expression depends upon the ligand that activates the cell survival pathway.
AB - Phosphatidylinositol 3'-kinase (PI 3-kinase) catalyzes the formation of 3' phosphoinositides and has been implicated in an intracellular signaling pathway that inhibits apoptosis in both neuronal and hemopoietic cells. Here, we investigated two potential downstream mediators of PI 3-kinase, the serine/threonine p70 S6-kinase (S6-kinase) and the antiapoptotic protein B cell lymphoma-2 (Bcl-2). Stimulation of factor-dependent cell progenitor (FDCP) cells with either IL-4 or insulin-like growth factor (IGF)-I induced a 10-fold increase in the activity of both PI 3-kinase and S6-kinase. Rapamycin blocked 90% of the S6-kinase activity but did not affect PI 3-kinase, whereas wortmannin and LY294002 inhibited the activity of both S6-kinase and PI 3- kinase. However, wortmannin and LY294002, but not rapamycin, blocked the ability of IL-4 and IGF-I to promote cell survival. We next established that IL-3, IL-4, and IGF-I increase expression of Bcl-2 by >3-fold. Pretreatment with inhibitors of PI 3-kinase, but not rapamycin, abrogated expression of Bcl-2 caused by IL-4 and IGF-I, but not by IL-3. None of the cytokines affected expression of the proapoptotic protein Bax, suggesting that all three cytokines were specific for Bcl-2. These data establish that inhibition of PI 3-kinase, but not S6-kinase, blocks the ability of IL-4 and IGF-I to increase expression of Bcl-2 and protect promyeloid cells from apoptosis. The requirement for PI 3-kinase to maintain Bcl-2 expression depends upon the ligand that activates the cell survival pathway.
UR - http://www.scopus.com/inward/record.url?scp=0033561763&partnerID=8YFLogxK
M3 - Article
C2 - 10201993
AN - SCOPUS:0033561763
SN - 0022-1767
VL - 162
SP - 4542
EP - 4549
JO - Journal of Immunology
JF - Journal of Immunology
IS - 8
ER -