Physicochemical and sensory characteristics of whey protein hydrolysates generated at different total solids levels

David Spellman, Gerard O'Cuinn, Richard J. FitzGerald

Research output: Contribution to journalArticlepeer-review

Abstract

Whey protein hydrolysates were generated at different total solids (TS) levels (50-300 g/l) using the commercially available proteolytic preparation Debitrase™ HYW20, while enzyme to substrate ratio, pH and temperature were maintained constant. Hydrolysis proceeded at a faster rate at lower TS reaching a degree of hydrolysis (DH) of 16.6% at 300 g TS/l, compared with a DH of 22.7% at 50 g TS/l after 6 h hydrolysis. The slower breakdown of intact whey proteins at high TS was quantified by gel-permeation HPLC. Reversed-phase (RP) HPLC of hydrolysate samples of equivalent DH (∼15%) generated at different TS levels indicated that certain hydrophobic peptide peaks were present at higher levels in hydrolysates generated at low TS. Sensory evaluation showed that hydrolysates with equivalent DH values were significantly (P < 0.0005) less bitter when generated at 300 g TS/l (mean bitterness score = 25.4%) than hydrolysates generated at 50 g TS/l (mean bitterness score = 39.9%). A specific hydrophobic peptide peak present at higher concentrations in hydrolysates generated at low TS was isolated and identified as β-lactoglobulin f(43-57), a fragment having the physical and chemical characteristics of a bitter peptide.

Original languageEnglish
Pages (from-to)138-143
Number of pages6
JournalJournal of Dairy Research
Volume72
Issue number2
DOIs
Publication statusPublished - May 2005

Keywords

  • Bitterness
  • Enzymatic hydrolysis
  • Hydrophobicity
  • Total solids
  • Whey protein

Fingerprint

Dive into the research topics of 'Physicochemical and sensory characteristics of whey protein hydrolysates generated at different total solids levels'. Together they form a unique fingerprint.

Cite this