TY - JOUR
T1 - Physiological characteristics of a 92-yr-old four-time world champion indoor rower
AU - Daly, Lorcan S.
AU - Van Hooren, Bas
AU - Jakeman, Philip
PY - 2023/12/1
Y1 - 2023/12/1
N2 - This study assessed the physiological, performance, nutritional intake, and training characteristics of a 92-yr-old four-time master world champion indoor male rower. Body composition was assessed via bioelectrical impedance. Oxygen uptake, carbon dioxide production, ventilation, and heart rate were measured at rest and during a 2,000-m time trial on a rowing ergometer. Maximal power was assessed to compute anaerobic power reserve. Training included ≈ 30 km/wk on the rowing ergometer. Herein, 70% of distances were covered at light intensities (RPE, 10-12), 20% at hard (RPE, 13-17), and 10% at near maximal or maximal (RPE, 17-20). Resistance training was performed during ≈ 2 sessions/wk, and involved three sets of dumbbell lunges, rows, and curls, respectively, taken close (or to) failure. Dietary intake was high in protein [2.3 ± 0.1 g·kg-1 lean body mass (LBM)], conferring a caloric intake of 33.4 ± 1.7 kcal·kg-1 LBM. The participant demonstrated muscle mass of 47.7 kg, fat mass of 9.1 kg (15.4% body fat), forced vital capacity of 3.36 L, time constant (τ) to steady state of 30.2 s, peak relative oxygen pulse of 0.18 ([mL·O2/beats/min]/kg), peak heart rate of 153 beats/min, and maximum power of 220 W (140 W anaerobic power reserve). This 92-yr-old athlete demonstrated remarkably fast oxygen uptake kinetics, akin to values for a healthy young adult, indicating well-developed and/or maintained cardiopulmonary function. The high values for cardiopulmonary function, muscle mass, metabolic efficiency, and maximum power output may infer the pliability of these systems to maintain high functionality at an advanced age.NEW & NOTEWORTHY To our knowledge, this study is the first to characterize the physiological attributes of a competitive rower (4-time master world champion) at an advanced age (≥ 85 yr). The participant demonstrated a high muscle mass (47.7 kg; 80.6% body mass), maximal power (220 W), and exceptional oxygen uptake kinetics (τ of 30.2 s), similar to values reported for healthy young adults.
AB - This study assessed the physiological, performance, nutritional intake, and training characteristics of a 92-yr-old four-time master world champion indoor male rower. Body composition was assessed via bioelectrical impedance. Oxygen uptake, carbon dioxide production, ventilation, and heart rate were measured at rest and during a 2,000-m time trial on a rowing ergometer. Maximal power was assessed to compute anaerobic power reserve. Training included ≈ 30 km/wk on the rowing ergometer. Herein, 70% of distances were covered at light intensities (RPE, 10-12), 20% at hard (RPE, 13-17), and 10% at near maximal or maximal (RPE, 17-20). Resistance training was performed during ≈ 2 sessions/wk, and involved three sets of dumbbell lunges, rows, and curls, respectively, taken close (or to) failure. Dietary intake was high in protein [2.3 ± 0.1 g·kg-1 lean body mass (LBM)], conferring a caloric intake of 33.4 ± 1.7 kcal·kg-1 LBM. The participant demonstrated muscle mass of 47.7 kg, fat mass of 9.1 kg (15.4% body fat), forced vital capacity of 3.36 L, time constant (τ) to steady state of 30.2 s, peak relative oxygen pulse of 0.18 ([mL·O2/beats/min]/kg), peak heart rate of 153 beats/min, and maximum power of 220 W (140 W anaerobic power reserve). This 92-yr-old athlete demonstrated remarkably fast oxygen uptake kinetics, akin to values for a healthy young adult, indicating well-developed and/or maintained cardiopulmonary function. The high values for cardiopulmonary function, muscle mass, metabolic efficiency, and maximum power output may infer the pliability of these systems to maintain high functionality at an advanced age.NEW & NOTEWORTHY To our knowledge, this study is the first to characterize the physiological attributes of a competitive rower (4-time master world champion) at an advanced age (≥ 85 yr). The participant demonstrated a high muscle mass (47.7 kg; 80.6% body mass), maximal power (220 W), and exceptional oxygen uptake kinetics (τ of 30.2 s), similar to values reported for healthy young adults.
KW - aging
KW - master athlete
KW - oxygen kinetics
KW - physiology
UR - http://www.scopus.com/inward/record.url?scp=85180015001&partnerID=8YFLogxK
U2 - 10.1152/japplphysiol.00698.2023
DO - 10.1152/japplphysiol.00698.2023
M3 - Article
C2 - 37916272
AN - SCOPUS:85180015001
SN - 8750-7587
VL - 135
SP - 1415
EP - 1420
JO - Journal of Applied Physiology
JF - Journal of Applied Physiology
IS - 6
ER -