Predict the success or failure of an evolutionary algorithm run

Gopinath Chennupati, Conor Ryan, R. Muhammad Atif Azad

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The quality of candidate solutions in evolutionary computation (EC) depend on multiple independent runs and a large number of them fail to guarantee optimal result. These runs consume more or less equal or sometimes higher amount of computational resources on par the runs that produce desirable results. This research work addresses these two issues (run quality, execution time), Run Prediction Model (RPM), in which undesirable quality evolutionary runs are identified to discontinue from their execution. An Ant Colony Optimization (ACO) based classifier that learns to discover a prediction model from the early generations of an EC run. We consider Grammatical Evolution (GE) as our EC technique to apply RPM that is evaluated on four symbolic regression problems. We establish that the RPM applied GE produces a significant improvement in the success rate while reducing the execution time.

Original languageEnglish
Title of host publicationGECCO 2014 - Companion Publication of the 2014 Genetic and Evolutionary Computation Conference
PublisherAssociation for Computing Machinery
Pages131-132
Number of pages2
ISBN (Print)9781450328814
DOIs
Publication statusPublished - 2014
Event16th Genetic and Evolutionary Computation Conference Companion, GECCO 2014 Companion - Vancouver, BC, Canada
Duration: 12 Jul 201416 Jul 2014

Publication series

NameGECCO 2014 - Companion Publication of the 2014 Genetic and Evolutionary Computation Conference

Conference

Conference16th Genetic and Evolutionary Computation Conference Companion, GECCO 2014 Companion
Country/TerritoryCanada
CityVancouver, BC
Period12/07/1416/07/14

Keywords

  • Ant mining
  • Grammatical Evolution
  • Machine learning
  • Symbolic regression
  • Training set

Fingerprint

Dive into the research topics of 'Predict the success or failure of an evolutionary algorithm run'. Together they form a unique fingerprint.

Cite this