TY - JOUR
T1 - Proteomics analysis in rats reveals convergent mechanisms between major depressive disorder and dietary zinc deficiency
AU - Gąsior, Łukasz
AU - Pochwat, Bartłomiej
AU - Zaręba-Kozioł, Monika
AU - Włodarczyk, Jakub
AU - Grabrucker, Andreas Martin
AU - Szewczyk, Bernadeta
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2024
Y1 - 2024
N2 - Background: Preclinical and clinical studies have shown that dietary zinc deficiency can lead to symptoms similar to those observed in major depressive disorder (MDD). However, the underlying molecular mechanisms remain unclear. To investigate these mechanisms, we examined proteomic changes in the prefrontal cortex (PFC) and hippocampus (HP) of rats, two critical brain regions implicated in the pathophysiology of depression. Methods: Rats were fed diets either adequate in zinc (ZnA, 50 mg Zn/kg) or deficient in zinc (ZnD, <3 mg/kg) for four weeks. High-throughput proteomic analysis was used to detect changes in protein expression, supplemented by enzyme activity assay for mitochondrial complexes I and IV, examining their functional impacts. Results: ZnD led to significant alterations in protein expression related to zinc transport and mitochondrial function. Proteomic analysis revealed changes in zinc transporter family members such as Slc30a1 (6.64 log2FC), Slc30a3 (-2.32 log2FC), Slc30a4 (2.87 log2FC), Slc30a5 (5.90 log2FC), Slc30a6 (1.50 log2FC), and Slc30a7 (2.17 log2FC) in the PFC, and Slc30a3 (-1.02 log2FC), Slc30a5 (-1.04 log2FC), and Slc30a7 (1.08 log2FC) in the HP of rats subjected to ZnD. Furthermore, ZnD significantly affected essential mitochondrial activity proteins, including Atp5pb (3.25 log2FC), Cox2 (2.28 log2FC), Atp5me (2.04 log2FC), Cyc1 (2.30 log2FC), Cox4i1 (1.23 log2FC), Cox7c (1.63 log2FC), and Cisd1 (1.55 log2FC), with a pronounced decrease in complex I activity in the PFC. Conclusions: Our study demonstrates that ZnD leads to significant proteomic changes in the PFC and HP of rats. Specifically, ZnD alters the expression of zinc transporter proteins and proteins critical for mitochondrial function. The significant decrease in complex I activity in the PFC further underscores the impact of ZnD on mitochondrial function. These results highlight the molecular mechanisms by which ZnD can influence brain function and contribute to symptoms similar to those observed in depression.
AB - Background: Preclinical and clinical studies have shown that dietary zinc deficiency can lead to symptoms similar to those observed in major depressive disorder (MDD). However, the underlying molecular mechanisms remain unclear. To investigate these mechanisms, we examined proteomic changes in the prefrontal cortex (PFC) and hippocampus (HP) of rats, two critical brain regions implicated in the pathophysiology of depression. Methods: Rats were fed diets either adequate in zinc (ZnA, 50 mg Zn/kg) or deficient in zinc (ZnD, <3 mg/kg) for four weeks. High-throughput proteomic analysis was used to detect changes in protein expression, supplemented by enzyme activity assay for mitochondrial complexes I and IV, examining their functional impacts. Results: ZnD led to significant alterations in protein expression related to zinc transport and mitochondrial function. Proteomic analysis revealed changes in zinc transporter family members such as Slc30a1 (6.64 log2FC), Slc30a3 (-2.32 log2FC), Slc30a4 (2.87 log2FC), Slc30a5 (5.90 log2FC), Slc30a6 (1.50 log2FC), and Slc30a7 (2.17 log2FC) in the PFC, and Slc30a3 (-1.02 log2FC), Slc30a5 (-1.04 log2FC), and Slc30a7 (1.08 log2FC) in the HP of rats subjected to ZnD. Furthermore, ZnD significantly affected essential mitochondrial activity proteins, including Atp5pb (3.25 log2FC), Cox2 (2.28 log2FC), Atp5me (2.04 log2FC), Cyc1 (2.30 log2FC), Cox4i1 (1.23 log2FC), Cox7c (1.63 log2FC), and Cisd1 (1.55 log2FC), with a pronounced decrease in complex I activity in the PFC. Conclusions: Our study demonstrates that ZnD leads to significant proteomic changes in the PFC and HP of rats. Specifically, ZnD alters the expression of zinc transporter proteins and proteins critical for mitochondrial function. The significant decrease in complex I activity in the PFC further underscores the impact of ZnD on mitochondrial function. These results highlight the molecular mechanisms by which ZnD can influence brain function and contribute to symptoms similar to those observed in depression.
KW - Depression
KW - Mitochondrial dysfunction
KW - Proteomic analysis
KW - Zinc deficiency
UR - http://www.scopus.com/inward/record.url?scp=85211457390&partnerID=8YFLogxK
U2 - 10.1007/s43440-024-00681-7
DO - 10.1007/s43440-024-00681-7
M3 - Article
C2 - 39623245
AN - SCOPUS:85211457390
SN - 1734-1140
JO - Pharmacological Reports
JF - Pharmacological Reports
ER -