Purification and Characterisation of a Thermostable β-Xylosidase from Aspergillus niger van Tieghem of Potential Application in Lignocellulosic Bioethanol Production

Research output: Contribution to journalArticlepeer-review

Abstract

A locally isolated strain of Aspergillus niger van Tieghem was found to produce thermostable β-xylosidase activity. The enzyme was purified by cation and anion exchange and hydrophobic interaction chromatography. Maximum activity was observed at 70–75 °C and pH 4.5. The enzyme was found to be thermostable retaining 91 and 87% of its original activity after incubation for 72 h at 60 and 65 °C, respectively, with 52% residual activity detected after 18 h at 70 °C. Available data indicates that the purified β-xylosidase is more thermostable over industrially relevant prolonged periods at high temperature than those reported from other A. niger strains. Maximum activity was observed on p-nitrophenyl-β-d-xylopyranoside and the enzyme also hydrolysed p-nitrophenyl β-d-glucopyranoside and p-nitrophenyl α-l-arabinofuranoside. The purified enzyme acted synergistically with A. niger endo-1,4-β-xylanase in the hydrolysis of beechwood xylan at 65 °C. During hydrolysis of pretreated straw lignocellulose at 70 °C using a commercial lignocellulosic enzyme cocktail, inclusion of the purified enzyme resulted in a 19-fold increase in the amount of xylose produced after 6 h. The results observed indicate potential suitability for industrial application in the production of lignocellulosic bioethanol where thermostable β-xylosidase activity is of growing interest to maximise the enzymatic hydrolysis of lignocellulose.

Original languageEnglish
Pages (from-to)712-730
Number of pages19
JournalApplied Biochemistry and Biotechnology
Volume186
Issue number3
DOIs
Publication statusPublished - 1 Nov 2018

Keywords

  • Aspergillus niger van Tieghem
  • Bioethanol
  • Lignocellulose
  • Thermostable
  • β-xylosidase

Fingerprint

Dive into the research topics of 'Purification and Characterisation of a Thermostable β-Xylosidase from Aspergillus niger van Tieghem of Potential Application in Lignocellulosic Bioethanol Production'. Together they form a unique fingerprint.

Cite this