TY - JOUR
T1 - Real-Time Reflexion Modelling in architecture reconciliation
T2 - A multi case study
AU - Buckley, Jim
AU - Ali, Nour
AU - English, Michael
AU - Rosik, Jacek
AU - Herold, Sebastian
N1 - Publisher Copyright:
© 2015 Elsevier B.V. All rights reserved.
PY - 2015/5/1
Y1 - 2015/5/1
N2 - Context Reflexion Modelling is considered one of the more successful approaches to architecture reconciliation. Empirical studies strongly suggest that professional developers involved in real-life industrial projects find the information provided by variants of this approach useful and insightful, but the degree to which it resolves architecture conformance issues is still unclear. Objective This paper aims to assess the level of architecture conformance achieved by professional architects using Reflexion Modelling, and to determine how the approach could be extended to improve its suitability for this task. Method An in vivo, multi-case-study protocol was adopted across five software systems, from four different financial services organizations. Think-aloud, video-tape and interview data from professional architects involved in Reflexion Modelling sessions were analysed qualitatively. Results This study showed that (at least) four months after the Reflexion Modelling sessions less than 50% of the architectural violations identified were removed. The majority of participants who did remove violations favoured changes to the architectural model rather than to the code. Participants seemed to work off two specific architectural templates, and interactively explored their architectural model to focus in on the causes of violations, and to assess the ramifications of potential code changes. They expressed a desire for dependency analysis beyond static-source-code analysis and scalable visualizations. Conclusion The findings support several interesting usage-in-practice traits, previously hinted at in the literature. These include (1) the iterative analysis of systems through Reflexion models, as a precursor to possible code change or as a focusing mechanism to identify the location of architecture conformance issues, (2) the extension of the approach with respect to dependency analysis of software systems and architectural modelling templates, (3) improved visualization support and (4) the insight that identification of architectural violations in itself does not lead to their removal in the majority of instances.
AB - Context Reflexion Modelling is considered one of the more successful approaches to architecture reconciliation. Empirical studies strongly suggest that professional developers involved in real-life industrial projects find the information provided by variants of this approach useful and insightful, but the degree to which it resolves architecture conformance issues is still unclear. Objective This paper aims to assess the level of architecture conformance achieved by professional architects using Reflexion Modelling, and to determine how the approach could be extended to improve its suitability for this task. Method An in vivo, multi-case-study protocol was adopted across five software systems, from four different financial services organizations. Think-aloud, video-tape and interview data from professional architects involved in Reflexion Modelling sessions were analysed qualitatively. Results This study showed that (at least) four months after the Reflexion Modelling sessions less than 50% of the architectural violations identified were removed. The majority of participants who did remove violations favoured changes to the architectural model rather than to the code. Participants seemed to work off two specific architectural templates, and interactively explored their architectural model to focus in on the causes of violations, and to assess the ramifications of potential code changes. They expressed a desire for dependency analysis beyond static-source-code analysis and scalable visualizations. Conclusion The findings support several interesting usage-in-practice traits, previously hinted at in the literature. These include (1) the iterative analysis of systems through Reflexion models, as a precursor to possible code change or as a focusing mechanism to identify the location of architecture conformance issues, (2) the extension of the approach with respect to dependency analysis of software systems and architectural modelling templates, (3) improved visualization support and (4) the insight that identification of architectural violations in itself does not lead to their removal in the majority of instances.
KW - Architecture conformance
KW - Architecture consistency
KW - Reflexion Modelling
KW - Software architecture
UR - http://www.scopus.com/inward/record.url?scp=84924723869&partnerID=8YFLogxK
U2 - 10.1016/j.infsof.2015.01.011
DO - 10.1016/j.infsof.2015.01.011
M3 - Article
AN - SCOPUS:84924723869
SN - 0950-5849
VL - 61
SP - 107
EP - 123
JO - Information and Software Technology
JF - Information and Software Technology
ER -