TY - JOUR
T1 - Redshift and optical anisotropy of collective π -volume modes in multiwalled carbon nanotubes
AU - Seepujak, A.
AU - Bangert, U.
AU - Harvey, A. J.
AU - Costa, P. M.F.J.
AU - Green, M. L.H.
PY - 2006
Y1 - 2006
N2 - A combined study concerning localized electron energy-loss spectroscopy (EELS) and modeling of collective π -volume modes in multiwalled carbon nanotubes (MWCNT) is presented. The changing line width and eigenfrequency of the π -volume mode can be ascribed solely to optical anisotropy and "cylindrical anisotropy." Optical anisotropy results from the weighting of various nearly degenerate and nondegenerate states allowed for the E c and E c polarizations. Cylindrical anisotropy arises from a lowering of the symmetry arising from the nanotube geometry. The eigenfrequency of the π -volume mode corresponds to polarization eigenmodes of graphite, and not to new maxima in the joint density of states, since momentum transfer Δ qπ →0. Results are also included from multiwalled hexagonal-boron nitride nanotubes (MWBNNT). An accurate description of the π -volume mode in multiwalled nanotubes has not been attempted so far, and is essential to resolve coupled MWCNT π -surface features, which are usually obscured in spectra obtained in penetrating-beam geometry. Volume mode-extracted EEL spectra demonstrate eigenfrequency modification of coupled π -surface features in the presence of a MWCNT dielectric filling. It was found, owing to dielectric screening effects and smearing of the dipole mode, that aloof-beam EELS which is conventionally applied to surface plasmon investigations, cannot give this information.
AB - A combined study concerning localized electron energy-loss spectroscopy (EELS) and modeling of collective π -volume modes in multiwalled carbon nanotubes (MWCNT) is presented. The changing line width and eigenfrequency of the π -volume mode can be ascribed solely to optical anisotropy and "cylindrical anisotropy." Optical anisotropy results from the weighting of various nearly degenerate and nondegenerate states allowed for the E c and E c polarizations. Cylindrical anisotropy arises from a lowering of the symmetry arising from the nanotube geometry. The eigenfrequency of the π -volume mode corresponds to polarization eigenmodes of graphite, and not to new maxima in the joint density of states, since momentum transfer Δ qπ →0. Results are also included from multiwalled hexagonal-boron nitride nanotubes (MWBNNT). An accurate description of the π -volume mode in multiwalled nanotubes has not been attempted so far, and is essential to resolve coupled MWCNT π -surface features, which are usually obscured in spectra obtained in penetrating-beam geometry. Volume mode-extracted EEL spectra demonstrate eigenfrequency modification of coupled π -surface features in the presence of a MWCNT dielectric filling. It was found, owing to dielectric screening effects and smearing of the dipole mode, that aloof-beam EELS which is conventionally applied to surface plasmon investigations, cannot give this information.
UR - http://www.scopus.com/inward/record.url?scp=33746778901&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.74.075402
DO - 10.1103/PhysRevB.74.075402
M3 - Article
AN - SCOPUS:33746778901
SN - 1098-0121
VL - 74
SP - -
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 7
M1 - 075402
ER -