TY - JOUR
T1 - Release behavior of metals from tin-lined copper cookware into food simulants during cooking and cold storage
AU - Banavi, Parvaneh
AU - Sadeghi, Ehsan
AU - Garavand, Farhad
AU - Heydari, Mahshid
AU - Rouhi, Milad
N1 - Publisher Copyright:
© 2020, Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2020/11/1
Y1 - 2020/11/1
N2 - The copper pots with an inner coating layer of tin have been remarkably used in many countries for a long time. In this study, leaching of some metals from tin-lined copper pots into food simulators at different pHs (4, 5.5, 7, and 8.5) during boiling processing (95 °C for 1, 2, and 3 h) or refrigerated storage (4 °C for 1, 2, and 3 days) was investigated. Citric acid and sodium hydroxide were used to adjust the pH of food simulators. The leaching concentrations of metals were analyzed by inductively coupled plasma optical emission spectrometers (ICP-OES). Scanning electron microscopy (SEM) was used to indicate the surface morphological properties of cookware. Based on the preliminary experiments, metals including Al, Sn, Cu, Mn, Fe, Ca, Na, Cr, Mg, and Zn were selected to analyze in acidic treatments. Furthermore, Al, Cu, Sn, Na, and Ca were analyzed for neutral and alkaline ones. Results showed that the boiling temperature for 3 h resulted in a much higher migration of metals compared with cold storage for 3 days. Mn and Cr showed the lowest metal concentration during cooking and cold storage, respectively. The concentration of Sn in acidic simulators was remarkably higher than the other metals during both cooking and refrigerated storage. However, Ca during cold storage, as well as Na during both cooking and cold storage, showed the most migration in alkaline solutions, among the other pHs. An acidic simulator with pH 4 showed the most considerable release of metals from copper pots. SEM results indicated more intense surface corrosion by acidic solution (pH 4) than alkaline one. In general, longer cooking and cold storage durations led to increasing metals release. The migration of the studied metals demonstrates the impurities of the tin layer of these cookwares that may lead to acute and/or chronic diseases.
AB - The copper pots with an inner coating layer of tin have been remarkably used in many countries for a long time. In this study, leaching of some metals from tin-lined copper pots into food simulators at different pHs (4, 5.5, 7, and 8.5) during boiling processing (95 °C for 1, 2, and 3 h) or refrigerated storage (4 °C for 1, 2, and 3 days) was investigated. Citric acid and sodium hydroxide were used to adjust the pH of food simulators. The leaching concentrations of metals were analyzed by inductively coupled plasma optical emission spectrometers (ICP-OES). Scanning electron microscopy (SEM) was used to indicate the surface morphological properties of cookware. Based on the preliminary experiments, metals including Al, Sn, Cu, Mn, Fe, Ca, Na, Cr, Mg, and Zn were selected to analyze in acidic treatments. Furthermore, Al, Cu, Sn, Na, and Ca were analyzed for neutral and alkaline ones. Results showed that the boiling temperature for 3 h resulted in a much higher migration of metals compared with cold storage for 3 days. Mn and Cr showed the lowest metal concentration during cooking and cold storage, respectively. The concentration of Sn in acidic simulators was remarkably higher than the other metals during both cooking and refrigerated storage. However, Ca during cold storage, as well as Na during both cooking and cold storage, showed the most migration in alkaline solutions, among the other pHs. An acidic simulator with pH 4 showed the most considerable release of metals from copper pots. SEM results indicated more intense surface corrosion by acidic solution (pH 4) than alkaline one. In general, longer cooking and cold storage durations led to increasing metals release. The migration of the studied metals demonstrates the impurities of the tin layer of these cookwares that may lead to acute and/or chronic diseases.
KW - Cold storage
KW - Cooper cookware
KW - Heat treatment
KW - Heavy metals
KW - Leaching
KW - Tin-lined
UR - http://www.scopus.com/inward/record.url?scp=85087527280&partnerID=8YFLogxK
U2 - 10.1007/s11356-020-09970-z
DO - 10.1007/s11356-020-09970-z
M3 - Article
C2 - 32623684
AN - SCOPUS:85087527280
SN - 0944-1344
VL - 27
SP - 38591
EP - 38601
JO - Environmental Science and Pollution Research
JF - Environmental Science and Pollution Research
IS - 31
ER -