TY - JOUR
T1 - Remote laboratories as a means to widen participation in STEM education
AU - Grout, Ian
N1 - Publisher Copyright:
© 2017 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2017/12
Y1 - 2017/12
N2 - In this paper, a discussion is presented into how remote laboratories can be utilized in STEM (science, technology, engineering, and mathematics) education in order to provide and promote access to laboratory experiments via the Internet. This provision can be considered from a range of viewpoints in how to use Internet-based technologies to allow remote access to physical laboratory experiments whilst taking into account the needs and wishes of the individual. In recent years, countries around the world have placed an increased emphasis on promoting access to education for traditionally underrepresented groups and also to improve the quality of STEM education. Despite this, gaining access to laboratory facilities and experiments for many people can still be a problem. Remote laboratories can, however, be designed, developed, and deployed to support access to STEM education by providing remote access to facilities that would not otherwise be accessible to an individual. Recently, a range of solutions have been developed and successfully deployed which can be used to both provide access to and improve the quality of an educational offering. This paper will consider how the remote laboratory can be developed and used. It can also be considered as an assistive technology which could be used to provide access to individuals with specific needs, such as disability. The paper will consider what a remote laboratory is and how it can be developed with accessibility in mind.
AB - In this paper, a discussion is presented into how remote laboratories can be utilized in STEM (science, technology, engineering, and mathematics) education in order to provide and promote access to laboratory experiments via the Internet. This provision can be considered from a range of viewpoints in how to use Internet-based technologies to allow remote access to physical laboratory experiments whilst taking into account the needs and wishes of the individual. In recent years, countries around the world have placed an increased emphasis on promoting access to education for traditionally underrepresented groups and also to improve the quality of STEM education. Despite this, gaining access to laboratory facilities and experiments for many people can still be a problem. Remote laboratories can, however, be designed, developed, and deployed to support access to STEM education by providing remote access to facilities that would not otherwise be accessible to an individual. Recently, a range of solutions have been developed and successfully deployed which can be used to both provide access to and improve the quality of an educational offering. This paper will consider how the remote laboratory can be developed and used. It can also be considered as an assistive technology which could be used to provide access to individuals with specific needs, such as disability. The paper will consider what a remote laboratory is and how it can be developed with accessibility in mind.
KW - Accessibility
KW - Education
KW - Laboratory
KW - Participation
KW - Remote
KW - STEM
UR - http://www.scopus.com/inward/record.url?scp=85060035849&partnerID=8YFLogxK
U2 - 10.3390/educsci7040085
DO - 10.3390/educsci7040085
M3 - Article
AN - SCOPUS:85060035849
SN - 2227-7102
VL - 7
JO - Education Sciences
JF - Education Sciences
IS - 4
M1 - 85
ER -