Revisiting Modality Imbalance In Multimodal Pedestrian Detection

Arindam Das, Sudip Das, Ganesh Sistu, Jonathan Horgan, Ujjwal Bhattacharya, Edward Jones, Martin Glavin, Ciarán Eising

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Multimodal learning, particularly for pedestrian detection, has recently received emphasis due to its capability to function equally well in several critical autonomous driving scenarios such as low-light, night-time, and adverse weather conditions. However, in most cases, the training distribution largely emphasizes the contribution of one specific input that makes the network biased towards one modality. Hence, the generalization of such models becomes a significant problem where the non-dominant input modality during training could be contributing more to the course of inference. Here, we introduce a novel training setup with regularizer in the multimodal architecture to resolve the problem of this disparity between the modalities. Specifically, our regularizer term helps to make the feature fusion method more robust by considering both the feature extractors equivalently important during the training to extract the multimodal distribution which is referred to as removing the imbalance problem. Furthermore, our decoupling concept of output stream helps the detection task by sharing the spatial sensitive information mutually. Extensive experiments of the proposed method on KAIST and UTokyo datasets shows improvement of the respective state-of-the-art performance.

Original languageEnglish
Title of host publication2023 IEEE International Conference on Image Processing, ICIP 2023 - Proceedings
PublisherIEEE Computer Society
Pages1755-1759
Number of pages5
ISBN (Electronic)9781728198354
DOIs
Publication statusPublished - 2023
Event30th IEEE International Conference on Image Processing, ICIP 2023 - Kuala Lumpur, Malaysia
Duration: 8 Oct 202311 Oct 2023

Publication series

NameProceedings - International Conference on Image Processing, ICIP
ISSN (Print)1522-4880

Conference

Conference30th IEEE International Conference on Image Processing, ICIP 2023
Country/TerritoryMalaysia
CityKuala Lumpur
Period8/10/2311/10/23

Keywords

  • Modality Imbalance
  • Multimodal Feature Fusion
  • Multimodal Learning
  • Pedestrian Detection

Fingerprint

Dive into the research topics of 'Revisiting Modality Imbalance In Multimodal Pedestrian Detection'. Together they form a unique fingerprint.

Cite this