Scalability analysis of grammatical evolution based test data generation

Muhammad Sheraz Anjum, Conor Ryan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Heuristic-based search techniques have been increasingly used to automate different aspects of software testing. Several studies suggest that variable interdependencies may exist in branching conditions of real-life programs, and these dependencies result in the need for highly precise data values (such as of the form i=j=k) for code coverage analysis. This requirement makes it very difficult for Genetic Algorithm (GA)-based approach to successfully search for the required test data from vast search spaces of real-life programs. Ariadne is the only Grammatical Evolution (GE)-based test data generation system, proposed to date, that uses grammars to exploit variable interdependencies to improve code coverage. Ariadne has been compared favourably to other well-known test data generation techniques in the literature; however, its scalability has not yet been tested for increasingly complex programs. This paper presents the results of a rigorous analysis performed to examine Ariadne's scalability. We also designed and employed a large set of highly scalable 18 benchmark programs for our experiments. Our results suggest that Ariadne is highly scalable as it exhibited 100% coverage across all the programs of increasing complexity with significantly smaller search costs than GA-based approaches, which failed even with huge search budgets.

Original languageEnglish
Title of host publicationGECCO 2020 - Proceedings of the 2020 Genetic and Evolutionary Computation Conference
PublisherAssociation for Computing Machinery
Pages1213-1221
Number of pages9
ISBN (Electronic)9781450371285
DOIs
Publication statusPublished - 25 Jun 2020
Event2020 Genetic and Evolutionary Computation Conference, GECCO 2020 - Cancun, Mexico
Duration: 8 Jul 202012 Jul 2020

Publication series

NameGECCO 2020 - Proceedings of the 2020 Genetic and Evolutionary Computation Conference

Conference

Conference2020 Genetic and Evolutionary Computation Conference, GECCO 2020
Country/TerritoryMexico
CityCancun
Period8/07/2012/07/20

Keywords

  • Automatic test data generation
  • Code coverage analysis
  • Evolutionary testing
  • Grammatical evolution
  • Scalability
  • Search based software testing
  • Software testing
  • Variable interdependencies

Fingerprint

Dive into the research topics of 'Scalability analysis of grammatical evolution based test data generation'. Together they form a unique fingerprint.

Cite this