TY - JOUR
T1 - Screening and Preparation of Cocrystals
T2 - A Comparative Study of Mechanochemistry vs Slurry Methods
AU - Haskins, Molly M.
AU - Zaworotko, Michael J.
N1 - Publisher Copyright:
© 2021 The Authors. Published by American Chemical Society.
PY - 2021/7/7
Y1 - 2021/7/7
N2 - Cocrystals of biologically active molecular compounds have potential utility in drug products thanks to their effect upon physicochemical properties such as aqueous solubility. The fact that control of cocrystallization can be more challenging than crystallization of single-component crystals means that systematic studies that address the methodology of cocrystal screening, production, and purification are a topical subject. We previously reported a comparison of slow evaporation vs mechanochemistry for a library of 25 molecular cocrystals. Herein, we compare the previously reported mechanochemistry results (solvent-drop grinding (SDG) with eight solvents) with new results obtained from slurrying in five preferred solvents using the same library of 25 cocrystals. Overall, both methods were found to be effective with slurrying and SDG being 94 and 78.5% successful, respectively. Importantly, 96% of the cocrystals formed via slurrying were observed to be free of starting materials (coformers) according to powder X-ray diffraction (PXRD), whereas this was the case for only 72% of the cocrystals prepared by SDG. Slurrying therefore compared favorably with mechanochemistry, which tends to leave small amounts of unreacted coformer(s) as byproducts, and solution crystallization, which often affords crystals of the least soluble coformer because it can be difficult to control the saturation of three or more solids. Perhaps the most interesting and surprising result of this study was that water slurrying proved to be highly effective, even for low-solubility coformers. Indeed, water slurrying was found to be effective for 21 of the 25 cocrystals studied.
AB - Cocrystals of biologically active molecular compounds have potential utility in drug products thanks to their effect upon physicochemical properties such as aqueous solubility. The fact that control of cocrystallization can be more challenging than crystallization of single-component crystals means that systematic studies that address the methodology of cocrystal screening, production, and purification are a topical subject. We previously reported a comparison of slow evaporation vs mechanochemistry for a library of 25 molecular cocrystals. Herein, we compare the previously reported mechanochemistry results (solvent-drop grinding (SDG) with eight solvents) with new results obtained from slurrying in five preferred solvents using the same library of 25 cocrystals. Overall, both methods were found to be effective with slurrying and SDG being 94 and 78.5% successful, respectively. Importantly, 96% of the cocrystals formed via slurrying were observed to be free of starting materials (coformers) according to powder X-ray diffraction (PXRD), whereas this was the case for only 72% of the cocrystals prepared by SDG. Slurrying therefore compared favorably with mechanochemistry, which tends to leave small amounts of unreacted coformer(s) as byproducts, and solution crystallization, which often affords crystals of the least soluble coformer because it can be difficult to control the saturation of three or more solids. Perhaps the most interesting and surprising result of this study was that water slurrying proved to be highly effective, even for low-solubility coformers. Indeed, water slurrying was found to be effective for 21 of the 25 cocrystals studied.
UR - http://www.scopus.com/inward/record.url?scp=85108632602&partnerID=8YFLogxK
U2 - 10.1021/acs.cgd.1c00418
DO - 10.1021/acs.cgd.1c00418
M3 - Article
AN - SCOPUS:85108632602
SN - 1528-7483
VL - 21
SP - 4141
EP - 4150
JO - Crystal Growth and Design
JF - Crystal Growth and Design
IS - 7
ER -