TY - JOUR
T1 - Simulation of biopsy bevel-tipped needle insertion into soft-gel
AU - Jushiddi, Mohamed Gouse
AU - Mulvihill, John J.E.
AU - Chovan, Drahomir
AU - Mani, Aladin
AU - Shanahan, Camelia
AU - Silien, Christophe
AU - Md Tofail, Syed Ansar
AU - Tiernan, P.
N1 - Publisher Copyright:
© 2019 Elsevier Ltd
PY - 2019/8
Y1 - 2019/8
N2 - Planning and practice of surgical procedures can be improved through the use of modelling. This study provides an insight into the biopsy needle (i.e. hollow cannula) and needle-tissue interactions using a modelling approach, thus enabling the optimization of needle-tip designs not only for training but also for the planning of surgical procedures. Simulations of needle insertion into agar gel were performed using a Coupled Eulerian-Lagrangian (CEL) based finite element (FE) analysis, adapted for large deformation and tissue fracture. The experimental work covers needle insertion into 3% agar gel using a needle with a beveled tip of various angles, to assess the validity of the simulation. The simulated needle deflection and insertion force for two needles (i.e. Needle 1 with 18° bevel angle and Needle 2 with 27° bevel angle) were compared with corresponding experimental results. The contact stress (i.e. contact pressure) on the needles from the agar gel during the insertion of the needles were also studied. Observations indicate that varying the needle bevel angle from 27° to 18° results in a decrease of the peak force (i.e. puncture force) and an increase in needle deflection. Quantitatively, the percentage errors between the experimental data and the FE model for the total insertion force along the z-direction (i.e. Z Force) for Needle 1 and 2 were 4% and 4.8% (p > 0.05), respectively. Similarly, needle deflection percentage errors along the x-z plane were 5.7% and 10% respectively. Therefore, the forces and needle deflection values predicted by the simulation are a close approximation of the experimental model, validating the Coupled Eulerian-Lagrangian based FE model. Thus, providing an experimentally validated model for biopsy and cytology needle design in silico that has the potential to replace the current build and break approach of needle design used by manufacturers.
AB - Planning and practice of surgical procedures can be improved through the use of modelling. This study provides an insight into the biopsy needle (i.e. hollow cannula) and needle-tissue interactions using a modelling approach, thus enabling the optimization of needle-tip designs not only for training but also for the planning of surgical procedures. Simulations of needle insertion into agar gel were performed using a Coupled Eulerian-Lagrangian (CEL) based finite element (FE) analysis, adapted for large deformation and tissue fracture. The experimental work covers needle insertion into 3% agar gel using a needle with a beveled tip of various angles, to assess the validity of the simulation. The simulated needle deflection and insertion force for two needles (i.e. Needle 1 with 18° bevel angle and Needle 2 with 27° bevel angle) were compared with corresponding experimental results. The contact stress (i.e. contact pressure) on the needles from the agar gel during the insertion of the needles were also studied. Observations indicate that varying the needle bevel angle from 27° to 18° results in a decrease of the peak force (i.e. puncture force) and an increase in needle deflection. Quantitatively, the percentage errors between the experimental data and the FE model for the total insertion force along the z-direction (i.e. Z Force) for Needle 1 and 2 were 4% and 4.8% (p > 0.05), respectively. Similarly, needle deflection percentage errors along the x-z plane were 5.7% and 10% respectively. Therefore, the forces and needle deflection values predicted by the simulation are a close approximation of the experimental model, validating the Coupled Eulerian-Lagrangian based FE model. Thus, providing an experimentally validated model for biopsy and cytology needle design in silico that has the potential to replace the current build and break approach of needle design used by manufacturers.
KW - Bevel-tipped
KW - Biopsy needle
KW - Coupled eulerian Lagrangian method
KW - Finite element analysis
KW - Needle deflection
KW - Needle insertion
UR - http://www.scopus.com/inward/record.url?scp=85068254828&partnerID=8YFLogxK
U2 - 10.1016/j.compbiomed.2019.103337
DO - 10.1016/j.compbiomed.2019.103337
M3 - Article
C2 - 31279981
AN - SCOPUS:85068254828
SN - 0010-4825
VL - 111
SP - 103337
JO - Computers in Biology and Medicine
JF - Computers in Biology and Medicine
M1 - 103337
ER -