Simulations of droplet collisions in shear flow

Orest Shardt, J. J. Derksen, Sushanta K. Mitra

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

When droplets collide in a shear flow, they may coalesce or remain separate after the collision. At low Reynolds numbers, droplets coalesce when the capillary number does not exceed a critical value. We present three-dimensional simulations of droplet coalescence in a simple shear flow. We use a freeenergy lattice Boltzmann method (LBM) and study the collision outcome as a function of the Reynolds and capillary numbers. We study the Reynolds number range from 0.2 to 1.4 and capillary numbers between 0.1 and 0.5. We determine the critical capillary number for the simulations (0.19) and find that it is does not depend on the Reynolds number. The simulations are compared with experiments on collisions between confined droplets in shear flow. The critical capillary number in the simulations is about a factor of 25 higher than the experimental value.

Original languageEnglish
Title of host publicationASME 2012 International Mechanical Engineering Congress and Exposition, IMECE 2012
Pages645-652
Number of pages8
EditionPARTS A AND B
DOIs
Publication statusPublished - 2012
Externally publishedYes
EventASME 2012 International Mechanical Engineering Congress and Exposition, IMECE 2012 - Houston, TX, United States
Duration: 9 Nov 201215 Nov 2012

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
NumberPARTS A AND B
Volume9

Conference

ConferenceASME 2012 International Mechanical Engineering Congress and Exposition, IMECE 2012
Country/TerritoryUnited States
CityHouston, TX
Period9/11/1215/11/12

Fingerprint

Dive into the research topics of 'Simulations of droplet collisions in shear flow'. Together they form a unique fingerprint.

Cite this