TY - JOUR
T1 - Solution processed ZnO homogeneous quasisuperlattice materials
AU - Buckley, Darragh
AU - McNulty, David
AU - Zubialevich, Vitaly
AU - Parbrook, Peter
AU - O'Dwyer, Colm
N1 - Publisher Copyright:
© 2017 Author(s).
PY - 2017/11/1
Y1 - 2017/11/1
N2 - Heterogeneous multilayered oxide channel materials have enabled low temperature, high mobility thin film transistor technology by solution processing. The authors report the growth and characterization of solution-based, highly uniform and c-axis orientated zinc oxide (ZnO) single and multilayered thin films. Quasisuperlattice (QSL) metal oxide thin films are deposited by spin-coating and the structural, morphological, optical, electronic, and crystallographic properties are investigated. In this work, the authors show that uniform, coherent multilayers of ZnO can be produced from liquid precursors using an iterative coating-drying technique that shows epitaxial-like growth on SiO2, at a maximum temperature of 300 °C in air. As QSL films are grown with a greater number of constituent layers, the crystal growth direction changes from m-plane to c-plane, confirmed by x-ray and electron diffraction. The film surface is smooth for all QSLs with root mean square roughness <0.14 nm. X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) of electronic defects in the QSL structure show a dependence of defect emission on the QSL thickness, and PL mapping demonstrates that the defect signature is consistent across the QSL film in each case. XPS and valence-band analysis shown a remarkably consistent surface composition and electronic structure during the annealing process developed here.
AB - Heterogeneous multilayered oxide channel materials have enabled low temperature, high mobility thin film transistor technology by solution processing. The authors report the growth and characterization of solution-based, highly uniform and c-axis orientated zinc oxide (ZnO) single and multilayered thin films. Quasisuperlattice (QSL) metal oxide thin films are deposited by spin-coating and the structural, morphological, optical, electronic, and crystallographic properties are investigated. In this work, the authors show that uniform, coherent multilayers of ZnO can be produced from liquid precursors using an iterative coating-drying technique that shows epitaxial-like growth on SiO2, at a maximum temperature of 300 °C in air. As QSL films are grown with a greater number of constituent layers, the crystal growth direction changes from m-plane to c-plane, confirmed by x-ray and electron diffraction. The film surface is smooth for all QSLs with root mean square roughness <0.14 nm. X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) of electronic defects in the QSL structure show a dependence of defect emission on the QSL thickness, and PL mapping demonstrates that the defect signature is consistent across the QSL film in each case. XPS and valence-band analysis shown a remarkably consistent surface composition and electronic structure during the annealing process developed here.
UR - http://www.scopus.com/inward/record.url?scp=85034629886&partnerID=8YFLogxK
U2 - 10.1116/1.5001758
DO - 10.1116/1.5001758
M3 - Article
AN - SCOPUS:85034629886
SN - 0734-2101
VL - 35
JO - Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films
JF - Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films
IS - 6
M1 - 061517
ER -