Abstract
Controllable single-molecule logic operations will enable development of reliable ultra-minimalistic circuit elements for high-density computing but require stable currents from multiple orthogonal inputs in molecular junctions. Utilizing the two unique adjacent conductive molecular orbitals (MOs) of gated Au/S-(CH2)3-Fc-(CH2)9-S/Au (Fc = ferrocene) single-electron transistors (≈2 nm), a stable single-electron logic calculator (SELC) is presented, which allows real-time modulation of output current as a function of orthogonal input bias (Vb) and gate (Vg) voltages. Reliable and low-voltage (ǀVbǀ ≤ 80 mV, ǀVgǀ ≤ 2 V) operations of the SELC depend upon the unambiguous association of current resonances with energy shifts of the MOs (which show an invariable, small energy separation of ≈100 meV) in response to the changes of voltages, which is confirmed by electron-transport calculations. Stable multi-logic operations based on the SELC modulated current conversions between the two resonances and Coulomb blockade regimes are demonstrated via the implementation of all universal 1-input (YES/NOT/PASS_1/PASS_0) and 2-input (AND/XOR/OR/NAND/NOR/INT/XNOR) logic gates.
Original language | English |
---|---|
Article number | 2202135 |
Pages (from-to) | e2202135 |
Journal | Advanced Materials |
Volume | 34 |
Issue number | 26 |
DOIs | |
Publication status | Published - 1 Jul 2022 |
Keywords
- Coulomb blockade
- logic gates
- molecular electronics
- single-electron transistors
- single-molecule devices