TY - JOUR
T1 - State-variable friction for the Burridge-Knopoff model
AU - Clancy, Ian
AU - Corcoran, David
PY - 2009/8/6
Y1 - 2009/8/6
N2 - This work shows the relationship of the state variable rock-friction law proposed by Dieterich to the Carlson and Langer friction law commonly used in the Burridge-Knopoff (BK) model of earthquakes. Further to this, the Dieterich law is modified to allow slip rates of zero magnitude yielding a three parameter friction law that is included in the BK system. Dynamic phases of small scale and large scale events are found with a transition surface in the parameter space. Near this transition surface the event size distribution follows a power law with an exponent that varies as the transition is approached contrasting with the invariant exponent observed using the Carlson and Langer friction. This variability of the power-law exponent is consistent with the range of exponents measured in real earthquake systems and is more selective than the range observed in the Olami-Feder-Christensen model.
AB - This work shows the relationship of the state variable rock-friction law proposed by Dieterich to the Carlson and Langer friction law commonly used in the Burridge-Knopoff (BK) model of earthquakes. Further to this, the Dieterich law is modified to allow slip rates of zero magnitude yielding a three parameter friction law that is included in the BK system. Dynamic phases of small scale and large scale events are found with a transition surface in the parameter space. Near this transition surface the event size distribution follows a power law with an exponent that varies as the transition is approached contrasting with the invariant exponent observed using the Carlson and Langer friction. This variability of the power-law exponent is consistent with the range of exponents measured in real earthquake systems and is more selective than the range observed in the Olami-Feder-Christensen model.
UR - http://www.scopus.com/inward/record.url?scp=68949128876&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.80.016113
DO - 10.1103/PhysRevE.80.016113
M3 - Article
AN - SCOPUS:68949128876
SN - 1539-3755
VL - 80
JO - Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
JF - Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
IS - 1
M1 - 016113
ER -