Abstract
Single-lap shear behaviour of carbon-epoxy composite bolted aircraft fuselage joints at quasi-static and dynamic (5 m/s and 10 m/s) loading speeds is studied experimentally. Single and multi-bolt joints with countersunk fasteners were tested. The initial joint failure mode was bearing, while final failure was either due to fastener pull-through or fastener fracture at a thread. Much less hole bearing damage, and hence energy absorption, occurred when the fastener(s) fractured at a thread, which occurred most frequently in thick joints and in quasi-static tests. Fastener failure thus requires special consideration in designing crashworthy fastened composite structures; if it can be delayed, energy absorption is greater. A correlation between energy absorption in multi-bolt and single-bolt joint tests indicates potential to downsize future test programmes. Tapering a thin fuselage panel layup to a thicker layup at the countersunk hole proved highly effective in achieving satisfactory joint strength and energy absorption.
Original language | English |
---|---|
Pages (from-to) | 97-108 |
Number of pages | 12 |
Journal | Composites Part A: Applied Science and Manufacturing |
Volume | 53 |
DOIs | |
Publication status | Published - 2013 |
Keywords
- A. Polymer-matrix composites
- B. Fracture
- D. Mechanical testing
- E. Joints/joining