TY - JOUR
T1 - Study of aldh from thermus thermophilus–expression, purification and characterisation of the non-substrate specific, thermophilic enzyme displaying both dehydrogenase and esterase activity
AU - Shortall, Kim
AU - Durack, Edel
AU - Magner, Edmond
AU - Soulimane, Tewfik
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/12
Y1 - 2021/12
N2 - Aldehyde dehydrogenases (ALDH), found in all kingdoms of life, form a superfamily of enzymes that primarily catalyse the oxidation of aldehydes to form carboxylic acid products, while utilising the cofactor NAD(P)+. Some superfamily members can also act as esterases using p-nitrophenyl esters as substrates. The ALDHTt from Thermus thermophilus was recombinantly expressed in E. coli and purified to obtain high yields (approximately 15–20 mg/L) and purity utilising an efficient heat treatment step coupled with IMAC and gel filtration chromatography. The use of the heat treatment step proved critical, in its absence decreased yield of 40% was observed. Characterisation of the thermophilic ALDHTt led to optimum enzymatic working conditions of 50 °C, and a pH of 8. ALDHTt possesses dual enzymatic activity, with the ability to act as a dehydrogenase and an esterase. ALDHTt possesses broad substrate specificity, displaying activity for a range of aldehydes, most notably hexanal and the synthetic dialdehyde, terephthalaldehyde. Interestingly, para-substituted benzaldehydes could be processed efficiently, but ortho-substitution resulted in no catalytic activity. Similarly, ALDHTt displayed activity for two different esterase substrates, p-nitrophenyl acetate and p-nitrophenyl butyrate, but with activities of 22.9 and 8.9%, respectively, compared to the activity towards hexanal.
AB - Aldehyde dehydrogenases (ALDH), found in all kingdoms of life, form a superfamily of enzymes that primarily catalyse the oxidation of aldehydes to form carboxylic acid products, while utilising the cofactor NAD(P)+. Some superfamily members can also act as esterases using p-nitrophenyl esters as substrates. The ALDHTt from Thermus thermophilus was recombinantly expressed in E. coli and purified to obtain high yields (approximately 15–20 mg/L) and purity utilising an efficient heat treatment step coupled with IMAC and gel filtration chromatography. The use of the heat treatment step proved critical, in its absence decreased yield of 40% was observed. Characterisation of the thermophilic ALDHTt led to optimum enzymatic working conditions of 50 °C, and a pH of 8. ALDHTt possesses dual enzymatic activity, with the ability to act as a dehydrogenase and an esterase. ALDHTt possesses broad substrate specificity, displaying activity for a range of aldehydes, most notably hexanal and the synthetic dialdehyde, terephthalaldehyde. Interestingly, para-substituted benzaldehydes could be processed efficiently, but ortho-substitution resulted in no catalytic activity. Similarly, ALDHTt displayed activity for two different esterase substrates, p-nitrophenyl acetate and p-nitrophenyl butyrate, but with activities of 22.9 and 8.9%, respectively, compared to the activity towards hexanal.
KW - Aldehyde dehydrogenase
KW - Biochemical characterisation
KW - Esterase activity
KW - Heat treatment purification
KW - Substrate specificity
KW - Thermophilic enzyme
UR - http://www.scopus.com/inward/record.url?scp=85121029101&partnerID=8YFLogxK
U2 - 10.3390/cells10123535
DO - 10.3390/cells10123535
M3 - Article
C2 - 34944041
AN - SCOPUS:85121029101
SN - 2073-4409
VL - 10
SP - -
JO - Cells
JF - Cells
IS - 12
M1 - 3535
ER -