TY - JOUR
T1 - Supramolecular Synthon Promiscuity in Phosphoric Acid-Dihydrogen Phosphate Ionic Cocrystals
AU - Haskins, Molly M.
AU - Lusi, Matteo
AU - Zaworotko, Michael J.
N1 - Publisher Copyright:
© 2022 American Chemical Society. All rights reserved.
PY - 2022/5/4
Y1 - 2022/5/4
N2 - Approximately 80% of active pharmaceutical ingredients (APIs) studied as lead candidates in drug development exhibit low aqueous solubility, which typically results in such APIs being poorly absorbed and exhibiting low bioavailability. Salts of ionizable APIs and, more recently, pharmaceutical cocrystals can address low solubility and other relevant physicochemical properties. Pharmaceutical cocrystals are amenable to design through crystal engineering because supramolecular synthons, especially those sustained by hydrogen bonds, can be anticipated through computational modeling or Cambridge Structural Database (CSD) mining. In this contribution, we report a combined experimental and CSD study on a class of cocrystals that, although present in approved drug substances, remains understudied from a crystal engineering perspective: ionic cocrystals composed of dihydrogen phosphate (DHP) salts and phosphoric acid (PA). Ten novel DHP:PA ionic cocrystals were prepared from nine organic bases (4,4′-bipyridine, 5-aminoquinoline, 4,4′-azopyridine, 1,4-diazabicyclo[2.2.2]octane, piperazine, 1,2-bis(4-pyridyl)ethane, 1,2-bis(4-pyridyl)xylene, 1,2-di(4-pyridyl)-1,2-ethanediol, and isoquinoline-5-carboxylic acid) and one anticonvulsant API, lamotrigine. From the resulting crystal structures and a CSD search of previously reported DHP:PA ionic cocrystals, 46 distinct hydrogen bonding motifs (HBMs) have been identified between DHP anions, PA molecules, and, in some cases, water molecules. Our results indicate that although DHP:PA ionic cocrystals are a challenge from a crystal engineering perspective, they are formed reliably and, given that phosphoric acid is a pharmaceutically acceptable coformer, this makes them relevant to pharmaceutical science.
AB - Approximately 80% of active pharmaceutical ingredients (APIs) studied as lead candidates in drug development exhibit low aqueous solubility, which typically results in such APIs being poorly absorbed and exhibiting low bioavailability. Salts of ionizable APIs and, more recently, pharmaceutical cocrystals can address low solubility and other relevant physicochemical properties. Pharmaceutical cocrystals are amenable to design through crystal engineering because supramolecular synthons, especially those sustained by hydrogen bonds, can be anticipated through computational modeling or Cambridge Structural Database (CSD) mining. In this contribution, we report a combined experimental and CSD study on a class of cocrystals that, although present in approved drug substances, remains understudied from a crystal engineering perspective: ionic cocrystals composed of dihydrogen phosphate (DHP) salts and phosphoric acid (PA). Ten novel DHP:PA ionic cocrystals were prepared from nine organic bases (4,4′-bipyridine, 5-aminoquinoline, 4,4′-azopyridine, 1,4-diazabicyclo[2.2.2]octane, piperazine, 1,2-bis(4-pyridyl)ethane, 1,2-bis(4-pyridyl)xylene, 1,2-di(4-pyridyl)-1,2-ethanediol, and isoquinoline-5-carboxylic acid) and one anticonvulsant API, lamotrigine. From the resulting crystal structures and a CSD search of previously reported DHP:PA ionic cocrystals, 46 distinct hydrogen bonding motifs (HBMs) have been identified between DHP anions, PA molecules, and, in some cases, water molecules. Our results indicate that although DHP:PA ionic cocrystals are a challenge from a crystal engineering perspective, they are formed reliably and, given that phosphoric acid is a pharmaceutically acceptable coformer, this makes them relevant to pharmaceutical science.
UR - http://www.scopus.com/inward/record.url?scp=85128685884&partnerID=8YFLogxK
U2 - 10.1021/acs.cgd.2c00150
DO - 10.1021/acs.cgd.2c00150
M3 - Article
AN - SCOPUS:85128685884
SN - 1528-7483
VL - 22
SP - 3333
EP - 3342
JO - Crystal Growth and Design
JF - Crystal Growth and Design
IS - 5
ER -