TY - JOUR
T1 - Surface-Ligand-Modified CdSe/CdS Nanorods for High-Performance Light-Emitting Diodes
AU - Zhang, Hui
AU - Mi, Xiaohu
AU - Kang, Bowen
AU - Wu, Yunkai
AU - Zhang, Tingting
AU - Liu, Pai
AU - Sun, Xiaowei
AU - Zhang, Zhenglong
AU - Liu, Ning
AU - Xu, Hongxing
N1 - Publisher Copyright:
© 2023 The Authors. Published by American Chemical Society.
PY - 2023/1/31
Y1 - 2023/1/31
N2 - Colloidal nanocrystals (NCs) play an important role in the field of optoelectronic devices such as photovoltaic cells, photodetectors, and light-emitting diodes (LEDs). The properties of NC films are strongly affected by ligands attached to them, which constitute a barrier for charge transport between adjacent NCs. Therefore, the method of surface modification by ligand exchange has been used to improve the electrical conductivity of NC films. However, surface modification to NCs in LEDs can also affect emission characteristics. Among NCs, nanorods have unique properties, such as suppression of nonradiative Auger recombination and linearly polarized light emission. In this work, CdSe/CdS nanorods (NRs) were prepared by the hot injection method. To increase the charge transport into CdSe/CdS NRs, we adopted ligand modification to CdSe/CdS NRs. Using this technique, we could shorten the injection barrier length between CdSe/CdS NRs and adjacent layers. It leads to a more balanced charge injection of electron/hole and a greatly increased current efficiency of CdSe/CdS NR-LEDs. In the NR-LEDs, the ligand exchange boosted the electroluminance, reaching a sixfold increase from 848 cd/m2 of native surfactants to 5600 cd/m2 of the exchanged n-octanoic acid ligands at 12 V. The improvement of CdSe/CdS NR-LED performance is closely correlated to the efficient control of charge balance via ligand modification strategy, which is expected to be indispensable to the future NR-LED-based optoelectronic system.
AB - Colloidal nanocrystals (NCs) play an important role in the field of optoelectronic devices such as photovoltaic cells, photodetectors, and light-emitting diodes (LEDs). The properties of NC films are strongly affected by ligands attached to them, which constitute a barrier for charge transport between adjacent NCs. Therefore, the method of surface modification by ligand exchange has been used to improve the electrical conductivity of NC films. However, surface modification to NCs in LEDs can also affect emission characteristics. Among NCs, nanorods have unique properties, such as suppression of nonradiative Auger recombination and linearly polarized light emission. In this work, CdSe/CdS nanorods (NRs) were prepared by the hot injection method. To increase the charge transport into CdSe/CdS NRs, we adopted ligand modification to CdSe/CdS NRs. Using this technique, we could shorten the injection barrier length between CdSe/CdS NRs and adjacent layers. It leads to a more balanced charge injection of electron/hole and a greatly increased current efficiency of CdSe/CdS NR-LEDs. In the NR-LEDs, the ligand exchange boosted the electroluminance, reaching a sixfold increase from 848 cd/m2 of native surfactants to 5600 cd/m2 of the exchanged n-octanoic acid ligands at 12 V. The improvement of CdSe/CdS NR-LED performance is closely correlated to the efficient control of charge balance via ligand modification strategy, which is expected to be indispensable to the future NR-LED-based optoelectronic system.
UR - http://www.scopus.com/inward/record.url?scp=85146561200&partnerID=8YFLogxK
U2 - 10.1021/ACSOMEGA.2C05730
DO - 10.1021/ACSOMEGA.2C05730
M3 - Article
AN - SCOPUS:85146561200
SN - 2470-1343
VL - 8
SP - 3762
EP - 3767
JO - ACS Omega
JF - ACS Omega
IS - 4
ER -