TY - JOUR
T1 - Tars from Fluidized Bed Gasification of Raw and Torrefied Miscanthus x giganteus
AU - Horvat, Alen
AU - Kwapinska, Marzena
AU - Xue, Gang
AU - Rabou, Luc P.L.M.
AU - Pandey, Daya Shankar
AU - Kwapinski, Witold
AU - Leahy, James J.
N1 - Publisher Copyright:
© 2016 American Chemical Society.
PY - 2016/7/21
Y1 - 2016/7/21
N2 - The current study investigates the effect of temperature, equivalence ratio, and biomass composition on tar yields and composition. Torrefied and raw Miscanthus x giganteus (M×G) were used as biomass feedstocks in an atmospheric bubbling fluidized bed gasifier for experiments undertaken between 660 and 850 °C and equivalence ratios from 0.18 to 0.32. Tar was sampled according to the solid phase adsorption method and analyzed by gas chromatography. There is an indication that torrefied M×G produces higher amounts of total GC-detectable tar as well as higher yields of 20 individually quantified tar compounds compared with those of raw M×G. Under similar gasification conditions (800 °C and an equivalence ratio of 0.21), the total GC-detectable tar for torrefied M×G is approximately 42% higher than that for raw M×G. Higher tar yields are observed to be related to higher lignin and lower moisture content of torrefied M×G. The effect of temperature on tar yields is in good agreement with the literature. The highest yield of total GC-detectable tar, secondary tars, and tertiary-alkyl tars is observed between 750 and 800 °C, followed by a decrease at higher temperature, whereas tertiary-polycyclic aromatics increase with the temperature over the range tested. The effect of equivalence ratio on total GC-detectable tar is not clear because data points vary significantly (up to 47%) over the range of equivalence ratios tested. Temperature is the main driver for tar production and its chemical composition; however, this study indicates that tar yields depend significantly on biomass composition.
AB - The current study investigates the effect of temperature, equivalence ratio, and biomass composition on tar yields and composition. Torrefied and raw Miscanthus x giganteus (M×G) were used as biomass feedstocks in an atmospheric bubbling fluidized bed gasifier for experiments undertaken between 660 and 850 °C and equivalence ratios from 0.18 to 0.32. Tar was sampled according to the solid phase adsorption method and analyzed by gas chromatography. There is an indication that torrefied M×G produces higher amounts of total GC-detectable tar as well as higher yields of 20 individually quantified tar compounds compared with those of raw M×G. Under similar gasification conditions (800 °C and an equivalence ratio of 0.21), the total GC-detectable tar for torrefied M×G is approximately 42% higher than that for raw M×G. Higher tar yields are observed to be related to higher lignin and lower moisture content of torrefied M×G. The effect of temperature on tar yields is in good agreement with the literature. The highest yield of total GC-detectable tar, secondary tars, and tertiary-alkyl tars is observed between 750 and 800 °C, followed by a decrease at higher temperature, whereas tertiary-polycyclic aromatics increase with the temperature over the range tested. The effect of equivalence ratio on total GC-detectable tar is not clear because data points vary significantly (up to 47%) over the range of equivalence ratios tested. Temperature is the main driver for tar production and its chemical composition; however, this study indicates that tar yields depend significantly on biomass composition.
UR - http://www.scopus.com/inward/record.url?scp=84979517821&partnerID=8YFLogxK
U2 - 10.1021/acs.energyfuels.6b00532
DO - 10.1021/acs.energyfuels.6b00532
M3 - Article
AN - SCOPUS:84979517821
SN - 0887-0624
VL - 30
SP - 5693
EP - 5704
JO - Energy and Fuels
JF - Energy and Fuels
IS - 7
ER -