Testing advanced driver assistance systems using multi-objective search and neural networks

Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand, Thomas Stifter

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Recent years have seen a proliferation of complex Advanced Driver Assistance Systems (ADAS), in particular, for use in autonomous cars. These systems consist of sensors and cameras as well as image processing and decision support software components. They are meant to help drivers by providing proper warnings or by preventing dangerous situations. In this paper, we focus on the problem of design time testing of ADAS in a simulated environment. We provide a testing approach for ADAS by combining multiobjective search with surrogate models developed based on neural networks. We use multi-objective search to guide testing towards the most critical behaviors of ADAS. Surrogate modeling enables our testing approach to explore a larger part of the input search space within limited computational resources. We characterize the condition under which the multi-objective search algorithm behaves the same with and without surrogate modeling, thus showing the accuracy of our approach. We evaluate our approach by applying it to an industrial ADAS system. Our experiment shows that our approach automatically identifies test cases indicating critical ADAS behaviors. Further, we show that combining our search algorithm with surrogate modeling improves the quality of the generated test cases, especially under tight and realistic computational resources.

Original languageEnglish
Title of host publicationASE 2016 - Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering
EditorsSarfraz Khurshid, David Lo, Sven Apel
PublisherAssociation for Computing Machinery, Inc
Pages63-74
Number of pages12
ISBN (Electronic)9781450338455
DOIs
Publication statusPublished - 25 Aug 2016
Externally publishedYes
Event31st IEEE/ACM International Conference on Automated Software Engineering, ASE 2016 - Singapore, Singapore
Duration: 3 Sep 20167 Sep 2016

Publication series

NameASE 2016 - Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering

Conference

Conference31st IEEE/ACM International Conference on Automated Software Engineering, ASE 2016
Country/TerritorySingapore
CitySingapore
Period3/09/167/09/16

Keywords

  • Advanced Driver Assistance Systems
  • Multi-Objective Search Optimization
  • Neural Networks
  • Simulation
  • Surrogate Modeling

Fingerprint

Dive into the research topics of 'Testing advanced driver assistance systems using multi-objective search and neural networks'. Together they form a unique fingerprint.

Cite this