Textual data augmentation for efficient active learning on tiny datasets

Husam Quteineh, Spyridon Samothrakis, Richard Sutcliffe

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In this paper we propose a novel data augmentation approach where guided outputs of a language generation model, e.g. GPT-2, when labeled, can improve the performance of text classifiers through an active learning process. We transform the data generation task into an optimization problem which maximizes the usefulness of the generated output, using Monte Carlo Tree Search (MCTS) as the optimization strategy and incorporating entropy as one of the optimization criteria. We test our approach against a Non-Guided Data Generation (NGDG) process that does not optimize for a reward function. Starting with a small set of data, our results show an increased performance with MCTS of 26% on the TREC-6 Questions dataset, and 10% on the Stanford Sentiment Treebank SST-2 dataset. Compared with NGDG, we are able to achieve increases of 3% and 5% on TREC-6 and SST-2.

Original languageEnglish
Title of host publicationEMNLP 2020 - 2020 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference
PublisherAssociation for Computational Linguistics (ACL)
Pages7400-7410
Number of pages11
ISBN (Electronic)9781952148606
Publication statusPublished - 2020
Externally publishedYes
Event2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020 - Virtual, Online
Duration: 16 Nov 202020 Nov 2020

Publication series

NameEMNLP 2020 - 2020 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference

Conference

Conference2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020
CityVirtual, Online
Period16/11/2020/11/20

Fingerprint

Dive into the research topics of 'Textual data augmentation for efficient active learning on tiny datasets'. Together they form a unique fingerprint.

Cite this