The chewing robot: A new biologically-inspired way to evaluate dental restorative materials

D. Raabe, K. Alemzadeh, A. J.L. Harrison, A. J. Ireland

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This paper presents a novel in vitro dental wear simulator based on 6-6 parallel kinematics to replicate mechanical wear formation on dental materials and components, such as individual teeth, crowns or bridges. The human mandible, guided by a range of passive structures moves with up to six degrees of freedom (DOF). Currently available wear simulators lack the ability to perform these complex chewing movements. In addition simulators are unable to replicate the normal range of chewing forces as they have no control system able to mimic the natural muscle function controlled by the human central nervous system. Such discrepancies between true in vivo and simulated in vitro movements will influence the outcome and reliability of wear studies using such approaches. This paper summarizes the development of a new dynamic jaw simulator based on the kinematics of the human jaw.

Original languageEnglish
Title of host publicationProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEngineering the Future of Biomedicine, EMBC 2009
PublisherIEEE Computer Society
Pages6050-6053
Number of pages4
ISBN (Print)9781424432967
DOIs
Publication statusPublished - 2009
Externally publishedYes
Event31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 - Minneapolis, MN, United States
Duration: 2 Sep 20096 Sep 2009

Publication series

NameProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009

Conference

Conference31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009
Country/TerritoryUnited States
CityMinneapolis, MN
Period2/09/096/09/09

Fingerprint

Dive into the research topics of 'The chewing robot: A new biologically-inspired way to evaluate dental restorative materials'. Together they form a unique fingerprint.

Cite this