TY - GEN
T1 - The effect of reynolds number on the aerodynamic performance of micro radial flow fans
AU - Hanly, K.
AU - Grimes, R.
AU - Walsh, E.
AU - Rodgers, B.
AU - Punch, J.
PY - 2005
Y1 - 2005
N2 - Elevated heat dissipation and simultaneous reductions in package sizes are well documented for a range of electronics systems. The problem is heightened in portable systems where the space available for the implementation of an active cooling methodology is limited and conventional cooling products are too large. Using micro scale radial flow fans is a potential solution. However, little is known about the aerodynamic effects of reducing the fan scale and therefore Reynolds number to the extent required for typical portable electronic applications. This paper investigates this issue, by quantifying the reduction in aerodynamic performance which accompanies the reductions in scale. To do this, geometrically similar radial flow fans were fabricated with diameters ranging from 80 to 10mm. Measurements of the rotors' geometries are presented, showing a high degree of geometric similarity between the fans. The aerodynamic performance of each of the fans was measured. Non-dimensional performance of each of the larger fans were almost identical, while the performance plot of the smallest fan differed significantly from the others. The paper tentatively concludes that a fundamental change in flow phenomena has emerged in the smallest scale fan which has altered its aerodynamic characteristics.
AB - Elevated heat dissipation and simultaneous reductions in package sizes are well documented for a range of electronics systems. The problem is heightened in portable systems where the space available for the implementation of an active cooling methodology is limited and conventional cooling products are too large. Using micro scale radial flow fans is a potential solution. However, little is known about the aerodynamic effects of reducing the fan scale and therefore Reynolds number to the extent required for typical portable electronic applications. This paper investigates this issue, by quantifying the reduction in aerodynamic performance which accompanies the reductions in scale. To do this, geometrically similar radial flow fans were fabricated with diameters ranging from 80 to 10mm. Measurements of the rotors' geometries are presented, showing a high degree of geometric similarity between the fans. The aerodynamic performance of each of the fans was measured. Non-dimensional performance of each of the larger fans were almost identical, while the performance plot of the smallest fan differed significantly from the others. The paper tentatively concludes that a fundamental change in flow phenomena has emerged in the smallest scale fan which has altered its aerodynamic characteristics.
UR - http://www.scopus.com/inward/record.url?scp=29644444801&partnerID=8YFLogxK
U2 - 10.1115/HT2005-72514
DO - 10.1115/HT2005-72514
M3 - Conference contribution
AN - SCOPUS:29644444801
SN - 0791847314
SN - 9780791847312
T3 - Proceedings of the ASME Summer Heat Transfer Conference
SP - 549-552.1
BT - Proceedings of the ASME Summer Heat Transfer Conference, HT 2005
T2 - 2005 ASME Summer Heat Transfer Conference, HT 2005
Y2 - 17 July 2005 through 22 July 2005
ER -