The strain-generated electrical potential in cartilaginous tissues: a role for piezoelectricity

Philip Poillot, Christine L. Le Maitre, Jacques M. Huyghe

Research output: Contribution to journalReview articlepeer-review

Abstract

The strain-generated potential (SGP) is a well-established mechanism in cartilaginous tissues whereby mechanical forces generate electrical potentials. In articular cartilage (AC) and the intervertebral disc (IVD), studies on the SGP have focused on fluid- and ionic-driven effects, namely Donnan, diffusion and streaming potentials. However, recent evidence has indicated a direct coupling between strain and electrical potential. Piezoelectricity is one such mechanism whereby deformation of most biological structures, like collagen, can directly generate an electrical potential. In this review, the SGP in AC and the IVD will be revisited in light of piezoelectricity and mechanotransduction. While the evidence base for physiologically significant piezoelectric responses in tissue is lacking, difficulties in quantifying the physiological response and imperfect measurement techniques may have underestimated the property. Hindering our understanding of the SGP further, numerical models to-date have negated ferroelectric effects in the SGP and have utilised classic Donnan theory that, as evidence argues, may be oversimplified. Moreover, changes in the SGP with degeneration due to an altered extracellular matrix (ECM) indicate that the significance of ionic-driven mechanisms may diminish relative to the piezoelectric response. The SGP, and these mechanisms behind it, are finally discussed in relation to the cell response.

Original languageEnglish
Pages (from-to)91-100
Number of pages10
JournalBiophysical Reviews
Volume13
Issue number1
DOIs
Publication statusPublished - Feb 2021

Keywords

  • Cartilage
  • Electrical potential
  • Intervertebral disc
  • Mechanotransduction
  • Piezoelectricity
  • Streaming potential

Fingerprint

Dive into the research topics of 'The strain-generated electrical potential in cartilaginous tissues: a role for piezoelectricity'. Together they form a unique fingerprint.

Cite this