Abstract
Glasses for medical applications are used in particulate form or as a cement component. This work was undertaken to determine structural changes in 0.48SiO2-0.36ZnO-0.12CaO-0.04SrO glass when the SiO2 is substituted with 5 mol% increments of TiO2. X-ray Diffraction (XRD) was used to determine the presence of crystallinity. This occurred after additions of 20 mol% TiO2. Differential Thermal Analysis (DTA) and Network connectivity (NC) calculations determined that by increasing the TiO2 content, the Tg and NC reduced (Tg 670 °C to 632 °C, NC 1.83 to -1.14) suggesting that TiO2 acts as a modifying oxide. X-ray Photoelectron Spectroscopy (XPS) was used to determine the glass composition and the relative fraction of Bridging Oxygens (BO) to Non-Bridging Oxygens (NBO). XPS revealed that by increasing the concentration of TiO2, the NBO concentration increases, further suggesting the modifying role of Ti. The NBO/BO ratio was found to increase from 1.2 to 9.0 as the TiO2 content increased from 0 to 20 mol% additions. Raman spectroscopy was used to determine the Q-Structure of the glass series and found that the addition of TiO2 reduced the Raman shift from containing predominantly Q1/Q2 units when no Ti was present to Q 0/Q1 with TiO2 additions.
Original language | English |
---|---|
Pages (from-to) | 1021-1026 |
Number of pages | 6 |
Journal | Journal of Non-Crystalline Solids |
Volume | 357 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1 Feb 2011 |
Keywords
- Bioactive glass
- Raman spectroscopy
- Titanium
- X-ray Photoelectron Spectroscopy