Thermo-structural modelling of a plasma discharge tube for electric propulsion

D. De Faoite, D. J. Browne, J. I. Del Valle Gamboa, K. T. Stanton

Research output: Contribution to journalArticlepeer-review

Abstract

Potential thermal management strategies for the plasma generation section of a VASIMR® high-power electric propulsion space thruster are assessed. The plasma is generated in a discharge tube using helicon waves. The plasma generation process causes a significant thermal load on the plasma discharge tube and on neighbouring components, caused by cross-field particle diffusion and UV radiation. Four potential cooling system design strategies are assessed to deal with this thermal load. Four polycrystalline ceramics are evaluated for use as the plasma discharge tube material: alumina, aluminium nitride, beryllia, and silicon nitride. A finite element analysis (FEA) method was used to model the steady-state temperature and stress fields resulting from the plasma heat flux. Of the four materials assessed, aluminium nitride would result in the lowest plasma discharge tube temperatures and stresses. It was found that a design consisting of a monolithic ceramic plasma containment tube fabricated from aluminium nitride would be capable of operating up to a power level of at least 250 kW.

Original languageEnglish
Pages (from-to)541-552
Number of pages12
JournalApplied Thermal Engineering
Volume98
DOIs
Publication statusPublished - 5 Apr 2016
Externally publishedYes

Keywords

  • Discharge tube
  • Electric propulsion
  • Plasma
  • Thermo-structural modelling

Fingerprint

Dive into the research topics of 'Thermo-structural modelling of a plasma discharge tube for electric propulsion'. Together they form a unique fingerprint.

Cite this