Abstract
A facile method utilizing colloidal templating and sucrose as a carbon precursor is used to synthesize highly ordered, porous inverse opal structures as C/TiO2 nanocomposites. Material characterization shows amorphous TiO2 and a large pore size of ∼400 nm allowing for enhanced electrolyte penetration. C/TiO2 inverse opals materials as electrodes in Li-ion battery half cells demonstrate discharge and charge capacities of ∼870 mAh g−1 and 470 mAh g−1, respectively, at a current density of 150 mA g−1. The enhanced capacities, which surpass theoretical limits for TiO2 and carbon based on intercalation reactions, are analyzed under voltammetric conditions to assess relative contributions to capacity from diffusion-limited intercalation and capacitive charge compensation reactions. The porous structure contributes to excellent capacity retention, rate performance and improved Coulombic efficiency (99.6% after 250 cycles), compared to individual carbon and TiO2 inverse opals.
Original language | English |
---|---|
Article number | 010502 |
Journal | ECS Advances |
Volume | 3 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Mar 2024 |
Keywords
- batteries - Li-ion
- carbon materials
- coatings
- energy storage
- nanoscale materials
- porous materials
- surface modification